|
|
--- |
|
|
language: |
|
|
- en |
|
|
base_model: |
|
|
- openai/gpt-oss-20b |
|
|
pipeline_tag: text-generation |
|
|
tags: |
|
|
- gpt_oss |
|
|
- vllm |
|
|
- conversational |
|
|
- text-generation-inference |
|
|
- 8-bit precision |
|
|
- mxfp4 |
|
|
license: apache-2.0 |
|
|
license_name: apache-2.0 |
|
|
name: RedHatAI/gpt-oss-20b |
|
|
description: This model is the smaller version of the gpt-oss series, designed for lower latency and local or specialized use cases. |
|
|
readme: https://huggingface.co/RedHatAI/gpt-oss-20b/main/README.md |
|
|
tasks: |
|
|
- text-to-text |
|
|
- text-generation |
|
|
provider: OpenAI |
|
|
license_link: https://www.apache.org/licenses/LICENSE-2.0 |
|
|
validated_on: |
|
|
- RHOAI 2.25 |
|
|
- RHAIIS 3.2.2 |
|
|
--- |
|
|
|
|
|
<h1 style="display: flex; align-items: center; gap: 10px; margin: 0;"> |
|
|
gpt-oss-20b |
|
|
<img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" /> |
|
|
</h1> |
|
|
|
|
|
<a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;"> |
|
|
<img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" /> |
|
|
</a> |
|
|
|
|
|
<p> |
|
|
<a href="https://gpt-oss.com"><strong>Try gpt-oss</strong></a> · |
|
|
<a href="https://cookbook.openai.com/topic/gpt-oss"><strong>Guides</strong></a> · |
|
|
<a href="https://arxiv.org/abs/2508.10925"><strong>Model card</strong></a> · |
|
|
<a href="https://openai.com/index/introducing-gpt-oss/"><strong>OpenAI blog</strong></a> |
|
|
</p> |
|
|
|
|
|
Welcome to the gpt-oss series, [OpenAI’s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases. |
|
|
|
|
|
We’re releasing two flavors of these open models: |
|
|
- `gpt-oss-120b` — for production, general purpose, high reasoning use cases that fit into a single 80GB GPU (like NVIDIA H100 or AMD MI300X) (117B parameters with 5.1B active parameters) |
|
|
- `gpt-oss-20b` — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters) |
|
|
|
|
|
Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise. |
|
|
|
|
|
|
|
|
> [!NOTE] |
|
|
> This model card is dedicated to the smaller `gpt-oss-20b` model. Check out [`gpt-oss-120b`](https://huggingface.co/RedHatAI/gpt-oss-120b) for the larger model. |
|
|
|
|
|
# Highlights |
|
|
|
|
|
* **Permissive Apache 2.0 license:** Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment. |
|
|
* **Configurable reasoning effort:** Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs. |
|
|
* **Full chain-of-thought:** Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users. |
|
|
* **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning. |
|
|
* **Agentic capabilities:** Use the models’ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs. |
|
|
* **MXFP4 quantization:** The models were post-trained with MXFP4 quantization of the MoE weights, making `gpt-oss-120b` run on a single 80GB GPU (like NVIDIA H100 or AMD MI300X) and the `gpt-oss-20b` model run within 16GB of memory. All evals were performed with the same MXFP4 quantization. |
|
|
|
|
|
--- |
|
|
|
|
|
# Inference examples |
|
|
|
|
|
## Transformers |
|
|
|
|
|
You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package. |
|
|
|
|
|
To get started, install the necessary dependencies to setup your environment: |
|
|
|
|
|
``` |
|
|
pip install -U transformers kernels torch |
|
|
``` |
|
|
|
|
|
Once, setup you can proceed to run the model by running the snippet below: |
|
|
|
|
|
```py |
|
|
from transformers import pipeline |
|
|
import torch |
|
|
|
|
|
model_id = "openai/gpt-oss-20b" |
|
|
|
|
|
pipe = pipeline( |
|
|
"text-generation", |
|
|
model=model_id, |
|
|
torch_dtype="auto", |
|
|
device_map="auto", |
|
|
) |
|
|
|
|
|
messages = [ |
|
|
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."}, |
|
|
] |
|
|
|
|
|
outputs = pipe( |
|
|
messages, |
|
|
max_new_tokens=256, |
|
|
) |
|
|
print(outputs[0]["generated_text"][-1]) |
|
|
``` |
|
|
|
|
|
Alternatively, you can run the model via [`Transformers Serve`](https://huggingface.co/docs/transformers/main/serving) to spin up a OpenAI-compatible webserver: |
|
|
|
|
|
``` |
|
|
transformers serve |
|
|
transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-20b |
|
|
``` |
|
|
|
|
|
[Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers) |
|
|
|
|
|
## vLLM |
|
|
|
|
|
vLLM recommends using [uv](https://docs.astral.sh/uv/) for Python dependency management. You can use vLLM to spin up an OpenAI-compatible webserver. The following command will automatically download the model and start the server. |
|
|
|
|
|
```bash |
|
|
uv pip install --pre vllm==0.10.1+gptoss \ |
|
|
--extra-index-url https://wheels.vllm.ai/gpt-oss/ \ |
|
|
--extra-index-url https://download.pytorch.org/whl/nightly/cu128 \ |
|
|
--index-strategy unsafe-best-match |
|
|
|
|
|
vllm serve openai/gpt-oss-20b |
|
|
``` |
|
|
|
|
|
[Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm) |
|
|
|
|
|
<details> |
|
|
<summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary> |
|
|
|
|
|
```bash |
|
|
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \ |
|
|
--ipc=host \ |
|
|
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ |
|
|
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \ |
|
|
--name=vllm \ |
|
|
registry.access.redhat.com/rhaiis/rh-vllm-cuda \ |
|
|
vllm serve \ |
|
|
--tensor-parallel-size 8 \ |
|
|
--max-model-len 32768 \ |
|
|
--enforce-eager --model RedHatAI/gpt-oss-20b |
|
|
``` |
|
|
</details> |
|
|
|
|
|
|
|
|
<details> |
|
|
<summary>Deploy on <strong>Red Hat Openshift AI</strong></summary> |
|
|
|
|
|
```python |
|
|
# Setting up vllm server with ServingRuntime |
|
|
# Save as: vllm-servingruntime.yaml |
|
|
apiVersion: serving.kserve.io/v1alpha1 |
|
|
kind: ServingRuntime |
|
|
metadata: |
|
|
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name |
|
|
annotations: |
|
|
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe |
|
|
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]' |
|
|
labels: |
|
|
opendatahub.io/dashboard: 'true' |
|
|
spec: |
|
|
annotations: |
|
|
prometheus.io/port: '8080' |
|
|
prometheus.io/path: '/metrics' |
|
|
multiModel: false |
|
|
supportedModelFormats: |
|
|
- autoSelect: true |
|
|
name: vLLM |
|
|
containers: |
|
|
- name: kserve-container |
|
|
image: quay.io/modh/vllm:rhoai-2.25-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.25-rocm |
|
|
command: |
|
|
- python |
|
|
- -m |
|
|
- vllm.entrypoints.openai.api_server |
|
|
args: |
|
|
- "--port=8080" |
|
|
- "--model=/mnt/models" |
|
|
- "--served-model-name={{.Name}}" |
|
|
env: |
|
|
- name: HF_HOME |
|
|
value: /tmp/hf_home |
|
|
ports: |
|
|
- containerPort: 8080 |
|
|
protocol: TCP |
|
|
``` |
|
|
|
|
|
```python |
|
|
# Attach model to vllm server. This is an NVIDIA template |
|
|
# Save as: inferenceservice.yaml |
|
|
apiVersion: serving.kserve.io/v1beta1 |
|
|
kind: InferenceService |
|
|
metadata: |
|
|
annotations: |
|
|
openshift.io/display-name: gpt-oss-20b # OPTIONAL CHANGE |
|
|
serving.kserve.io/deploymentMode: RawDeployment |
|
|
name: gpt-oss-20b # specify model name. This value will be used to invoke the model in the payload |
|
|
labels: |
|
|
opendatahub.io/dashboard: 'true' |
|
|
spec: |
|
|
predictor: |
|
|
maxReplicas: 1 |
|
|
minReplicas: 1 |
|
|
model: |
|
|
modelFormat: |
|
|
name: vLLM |
|
|
name: '' |
|
|
resources: |
|
|
limits: |
|
|
cpu: '2' # this is model specific |
|
|
memory: 8Gi # this is model specific |
|
|
nvidia.com/gpu: '1' # this is accelerator specific |
|
|
requests: # same comment for this block |
|
|
cpu: '1' |
|
|
memory: 4Gi |
|
|
nvidia.com/gpu: '1' |
|
|
runtime: vllm-cuda-runtime # must match the ServingRuntime name above |
|
|
storageUri: oci://registry.redhat.io/rhelai1/modelcar-gpt-oss-20b:1.5 |
|
|
tolerations: |
|
|
- effect: NoSchedule |
|
|
key: nvidia.com/gpu |
|
|
operator: Exists |
|
|
``` |
|
|
|
|
|
```bash |
|
|
# make sure first to be in the project where you want to deploy the model |
|
|
# oc project <project-name> |
|
|
|
|
|
# apply both resources to run model |
|
|
|
|
|
# Apply the ServingRuntime |
|
|
oc apply -f vllm-servingruntime.yaml |
|
|
|
|
|
``` |
|
|
|
|
|
```python |
|
|
# Replace <inference-service-name> and <cluster-ingress-domain> below: |
|
|
# - Run `oc get inferenceservice` to find your URL if unsure. |
|
|
|
|
|
# Call the server using curl: |
|
|
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions |
|
|
-H "Content-Type: application/json" \ |
|
|
-d '{ |
|
|
"model": "gpt-oss-20b", |
|
|
"stream": true, |
|
|
"stream_options": { |
|
|
"include_usage": true |
|
|
}, |
|
|
"max_tokens": 1, |
|
|
"messages": [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": "How can a bee fly when its wings are so small?" |
|
|
} |
|
|
] |
|
|
}' |
|
|
|
|
|
``` |
|
|
|
|
|
See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details. |
|
|
</details> |
|
|
|
|
|
|
|
|
## PyTorch / Triton |
|
|
|
|
|
To learn about how to use this model with PyTorch and Triton, check out our [reference implementations in the gpt-oss repository](https://github.com/openai/gpt-oss?tab=readme-ov-file#reference-pytorch-implementation). |
|
|
|
|
|
## Ollama |
|
|
|
|
|
If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download). |
|
|
|
|
|
```bash |
|
|
# gpt-oss-20b |
|
|
ollama pull gpt-oss:20b |
|
|
ollama run gpt-oss:20b |
|
|
``` |
|
|
|
|
|
[Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama) |
|
|
|
|
|
#### LM Studio |
|
|
|
|
|
If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download. |
|
|
|
|
|
```bash |
|
|
# gpt-oss-20b |
|
|
lms get openai/gpt-oss-20b |
|
|
``` |
|
|
|
|
|
Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners. |
|
|
|
|
|
--- |
|
|
|
|
|
# Download the model |
|
|
|
|
|
You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI: |
|
|
|
|
|
```shell |
|
|
# gpt-oss-20b |
|
|
huggingface-cli download openai/gpt-oss-20b --include "original/*" --local-dir gpt-oss-20b/ |
|
|
pip install gpt-oss |
|
|
python -m gpt_oss.chat model/ |
|
|
``` |
|
|
|
|
|
# Reasoning levels |
|
|
|
|
|
You can adjust the reasoning level that suits your task across three levels: |
|
|
|
|
|
* **Low:** Fast responses for general dialogue. |
|
|
* **Medium:** Balanced speed and detail. |
|
|
* **High:** Deep and detailed analysis. |
|
|
|
|
|
The reasoning level can be set in the system prompts, e.g., "Reasoning: high". |
|
|
|
|
|
# Tool use |
|
|
|
|
|
The gpt-oss models are excellent for: |
|
|
* Web browsing (using built-in browsing tools) |
|
|
* Function calling with defined schemas |
|
|
* Agentic operations like browser tasks |
|
|
|
|
|
# Fine-tuning |
|
|
|
|
|
Both gpt-oss models can be fine-tuned for a variety of specialized use cases. |
|
|
|
|
|
This smaller model `gpt-oss-20b` can be fine-tuned on consumer hardware, whereas the larger [`gpt-oss-120b`](https://huggingface.co/openai/gpt-oss-120b) can be fine-tuned on a single H100 node. |
|
|
|
|
|
# Citation |
|
|
|
|
|
```bibtex |
|
|
@misc{openai2025gptoss120bgptoss20bmodel, |
|
|
title={gpt-oss-120b & gpt-oss-20b Model Card}, |
|
|
author={OpenAI}, |
|
|
year={2025}, |
|
|
eprint={2508.10925}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CL}, |
|
|
url={https://arxiv.org/abs/2508.10925}, |
|
|
} |
|
|
``` |