|
|
--- |
|
|
license: other |
|
|
license_name: sla0044 |
|
|
license_link: >- |
|
|
https://github.com/STMicroelectronics/stm32ai-modelzoo/blob/main/image_classification/resnet/ST_pretrainedmodel_public_dataset/LICENSE.md |
|
|
--- |
|
|
# ResNet v1 |
|
|
|
|
|
## **Use case** : `Image classification` |
|
|
|
|
|
# Model description |
|
|
|
|
|
ResNet models perform image classification - they take images as input and classify the major object in the image into a |
|
|
set of pre-defined classes. ResNet models provide very high accuracies with affordable model sizes. They are ideal for cases when high accuracy of classification is required. |
|
|
ResNet models consist of residual blocks and came up to counter the effect of deteriorating accuracies with more layers due to network not learning the initial layers. |
|
|
ResNet v1 uses post-activation for the residual blocks. The models below have 8 and 32 layers with ResNet v1 architecture. |
|
|
(source: https://keras.io/api/applications/resnet/) |
|
|
The model is quantized in int8 using tensorflow lite converter. |
|
|
|
|
|
|
|
|
## Network information |
|
|
|
|
|
| Network Information | Value | |
|
|
|-------------------------|-------------------------------------------------------------------------| |
|
|
| Framework | TensorFlow Lite | |
|
|
| Quantization | int8 | |
|
|
| Provenance | https://www.tensorflow.org/api_docs/python/tf/keras/applications/resnet | |
|
|
| Paper | https://arxiv.org/abs/1512.03385 | |
|
|
|
|
|
The models are quantized using tensorflow lite converter. |
|
|
|
|
|
## Network inputs / outputs |
|
|
|
|
|
For an image resolution of NxM and P classes |
|
|
|
|
|
| Input Shape | Description | |
|
|
|----------------|-------------------------------------------------------------| |
|
|
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 | |
|
|
|
|
|
| Output Shape | Description | |
|
|
|----------------|-------------------------------------------------------------| |
|
|
| (1, P) | Per-class confidence for P classes in FLOAT32 | |
|
|
|
|
|
## Recommended Platforms |
|
|
|
|
|
| Platform | Supported | Optimized | |
|
|
|----------|-----------|-----------| |
|
|
| STM32L0 | [] | [] | |
|
|
| STM32L4 | [x] | [] | |
|
|
| STM32U5 | [x] | [] | |
|
|
| STM32H7 | [x] | [x] | |
|
|
| STM32MP1 | [x] | [x]* | |
|
|
| STM32MP2 | [x] | [] | |
|
|
| STM32N6 | [x] | [] | |
|
|
|
|
|
* Only for Cifar 100 models |
|
|
|
|
|
# Performances |
|
|
|
|
|
## Metrics |
|
|
|
|
|
- Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option. |
|
|
- `tfs` stands for "training from scratch", meaning that the model weights were randomly initialized before training. |
|
|
- `tl` stands for "transfer learning", meaning that the model backbone weights were initialized from a pre-trained model, then only the last layer was unfrozen during the training. |
|
|
- `fft` stands for "full fine-tuning", meaning that the full model weights were initialized from a transfer learning pre-trained model, and all the layers were unfrozen during the training. |
|
|
|
|
|
|
|
|
### Reference **MCU** memory footprint based on Cifar 10 dataset (see Accuracy for details on dataset) |
|
|
|
|
|
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STEdgeAI Core version | |
|
|
|----------|--------|-------------|---------|----------------|-------------|---------------|------------|-----------|-------------|------------------------| |
|
|
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet/ST_pretrainedmodel_public_dataset/cifar10/resnet8_32_tfs/resnet8_32_tfs_int8.tflite) | Int8 | 32x32x3 | STM32H7 | 62.51 KiB | 1.26 KiB | 76.9 KiB | 36.08 KiB | 63.77 KiB | 112.98 KiB | 3.0.0 | |
|
|
|
|
|
|
|
|
### Reference **MCU** inference time based on Cifar 10 dataset (see Accuracy for details on dataset) |
|
|
|
|
|
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STEdgeAI Core version | |
|
|
|----------------------------------|--------|-------------|------------------|------------------|--------------|---------------------|------------------------| |
|
|
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet/ST_pretrainedmodel_public_dataset/cifar10/resnet8_32_tfs/resnet8_32_tfs_int8.tflite) | Int8 | 32x32x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 28.71 ms | 3.0.0 | |
|
|
|
|
|
|
|
|
### Reference **MPU** inference time based on Flowers dataset (see Accuracy for details on dataset) |
|
|
|
|
|
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework | |
|
|
|--------------------------------------------------------------------------------------------------------------------------|--------|------------|----------------|-----------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------| |
|
|
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet/ST_pretrainedmodel_public_dataset/cifar10/resnet8_32_tfs/resnet8_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel** | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 2.06 | 21.76 | 78.24 | 0 | v6.1.0 | OpenVX | |
|
|
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet/ST_pretrainedmodel_public_dataset/cifar10/resnet8_32_tfs/resnet8_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 6.71 | NA | NA | 100 | v6.1.0 | TensorFlowLite 2.18.0 | |
|
|
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet/ST_pretrainedmodel_public_dataset/cifar10/resnet8_32_tfs/resnet8_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 10.34 | NA | NA | 100 | v6.1.0 | TensorFlowLite 2.18.0 | |
|
|
|
|
|
|
|
|
** **To get the most out of MP25 NPU hardware acceleration, please use per-tensor quantization** |
|
|
|
|
|
** **Note:** On STM32MP2 devices, per-channel quantized models are internally converted to per-tensor quantization by the compiler using an entropy-based method. This may introduce a slight loss in accuracy compared to the original per-channel models. |
|
|
|
|
|
### Reference **MCU** memory footprint based on Cifar 100 dataset (see Accuracy for details on dataset) |
|
|
|
|
|
| Model | Format | Resolution | Series | Activation RAM | Runtime RAM | Weights Flash | Code Flash | Total RAM | Total Flash | STEdgeAI Core version | |
|
|
|-----------|--------|-------------|---------|----------------|-------------|---------------|------------|-------------|-------------|------------------------| |
|
|
| [ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet/ST_pretrainedmodel_public_dataset/cifar100/resnet32_32_tfs/resnet32_32_tfs_int8.tflite) | Int8 | 32x32x3 | STM32H7 | 45.41 KiB | 24.98 KiB | 464.38 KiB | 78.65 KiB | 70.39 KiB | 543.03 KiB | 3.0.0 | |
|
|
|
|
|
|
|
|
### Reference **MCU** inference time based on Cifar 100 dataset (see Accuracy for details on dataset) |
|
|
|
|
|
| Model | Format | Resolution | Board | Execution Engine | Frequency | Inference time (ms) | STEdgeAI Core version | |
|
|
|---------|--------|------------|------------------|------------------|--------------|---------------------|------------------------| |
|
|
| [ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet/ST_pretrainedmodel_public_dataset/cifar100/resnet32_32_tfs/resnet32_32_tfs_int8.tflite) | Int8 | 32x32x3 | STM32H747I-DISCO | 1 CPU | 400 MHz | 177.7 ms |3.0.0 | |
|
|
|
|
|
|
|
|
### Reference **MPU** inference time based on Flowers dataset (see Accuracy for details on dataset) |
|
|
| Model | Format | Resolution | Quantization | Board | Execution Engine | Frequency | Inference time (ms) | %NPU | %GPU | %CPU | X-LINUX-AI version | Framework | |
|
|
|---------------------------------------------------------------------------------------------------------------------|----------|------------|---------------|-------------------|------------------|-----------|---------------------|-------|-------|------|--------------------|-----------------------| |
|
|
|[ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet/ST_pretrainedmodel_public_dataset/cifar100/resnet32_32_tfs/resnet32_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP257F-DK2 | NPU/GPU | 800 MHz | 9.160 ms | 14.75 | 85.25 | 0 | v6.1.0 | OpenVX | |
|
|
|[ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet/ST_pretrainedmodel_public_dataset/cifar100/resnet32_32_tfs/resnet32_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP157F-DK2 | 2 CPU | 800 MHz | 34.78 ms | NA | NA | 100 | v6.1.0 | TensorFlowLite 2.11.0 | |
|
|
|[ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet/ST_pretrainedmodel_public_dataset/cifar100/resnet32_32_tfs/resnet32_32_tfs_int8.tflite) | Int8 | 32x32x3 | per-channel | STM32MP135F-DK2 | 1 CPU | 1000 MHz | 55.32 ms | NA | NA | 100 | v6.1.0 | TensorFlowLite 2.11.0 | |
|
|
|
|
|
|
|
|
### Accuracy with Cifar10 dataset |
|
|
|
|
|
Dataset details: [link](https://www.cs.toronto.edu/~kriz/cifar.html) , |
|
|
License [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) , Quotation[[1]](#1) , Number of classes: 10, Number of |
|
|
images: 60 000 |
|
|
|
|
|
| Model | Format | Resolution | Top 1 Accuracy | |
|
|
|------------------------------------------------------------------------------------------------------------------|----------|-------------|----------------| |
|
|
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet/ST_pretrainedmodel_public_dataset/cifar10/resnet8_32_tfs/resnet8_32_tfs.keras) | Float | 32x32x3 | 87.01 % | |
|
|
| [ResNet v1 8 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet/ST_pretrainedmodel_public_dataset/cifar10/resnet8_32_tfs/resnet8_32_tfs_int8.tflite) | Int8 | 32x32x3 | 85.59 % | |
|
|
|
|
|
|
|
|
### Accuracy with Cifar100 dataset |
|
|
|
|
|
Dataset details: [link](https://www.cs.toronto.edu/~kriz/cifar.html) , |
|
|
License [CC0 4.0](https://creativecommons.org/licenses/by/4.0/), Quotation[[2]](#2) , Number of classes:100, |
|
|
Number of images: 600 000 |
|
|
|
|
|
| Model | Format | Resolution | Top 1 Accuracy | |
|
|
|----------------------------------------------------------------------------------------------------------------------|---------|------------|----------------| |
|
|
| [ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet/ST_pretrainedmodel_public_dataset/cifar100/resnet32_32_tfs/resnet32_32_tfs.keras) | Float | 32x32x3 | 67.75 % | |
|
|
| [ResNet v1 32 tfs](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/resnet/ST_pretrainedmodel_public_dataset/cifar100/resnet32_32_tfs/resnet32_32_tfs_int8.tflite) | Int8 | 32x32x3 | 66.58 % | |
|
|
|
|
|
## Retraining and Integration in a simple example: |
|
|
|
|
|
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services) |
|
|
|
|
|
|
|
|
# References |
|
|
|
|
|
<a id="1">[1]</a> |
|
|
"Tf_flowers : tensorflow datasets," TensorFlow. [Online]. Available: https://www.tensorflow.org/datasets/catalog/tf_flowers. |
|
|
|
|
|
<a id="2">[2]</a> |
|
|
J, ARUN PANDIAN; GOPAL, GEETHARAMANI (2019), "Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network", Mendeley Data, V1, doi: 10.17632/tywbtsjrjv.1 |
|
|
|
|
|
<a id="3">[3]</a> |
|
|
L. Bossard, M. Guillaumin, and L. Van Gool, "Food-101 -- Mining Discriminative Components with Random Forests." European Conference on Computer Vision, 2014. |