Image Classification

SqueezeNext

Use case : Image classification

Model description

SqueezeNext is the successor to SqueezeNet, offering improved accuracy through skip connections, bottleneck modules, and separable convolutions. It is specifically designed for hardware efficiency.

The architecture employs a two-stage bottleneck with 1x1 squeeze followed by 1x1-3x3 expand patterns, with skip connections added for improved gradient flow. Separable convolutions further reduce computational cost, and the hardware-aware design is optimized for specific hardware platforms.

SqueezeNext is ideal for applications requiring SqueezeNet-style compactness with better accuracy, and hardware platforms with specific optimization targets.

(source: https://arxiv.org/abs/1803.10615)

The model is quantized to int8 using ONNX Runtime and exported for efficient deployment.

Network information

Network Information Value
Framework Torch
MParams ~0.68–3.17 M
Quantization Int8
Provenance https://github.com/amirgholami/SqueezeNext
Paper https://arxiv.org/abs/1803.10615

Network inputs / outputs

For an image resolution of NxM and P classes

Input Shape Description
(1, N, M, 3) Single NxM RGB image with UINT8 values between 0 and 255
Output Shape Description
(1, P) Per-class confidence for P classes in FLOAT32

Recommended platforms

Platform Supported Recommended
STM32L0 [] []
STM32L4 [] []
STM32U5 [] []
STM32H7 [] []
STM32MP1 [] []
STM32MP2 [] []
STM32N6 [x] [x]

Performances

Metrics

  • Measures are done with default STEdgeAI Core configuration with enabled input / output allocated option.
  • All the models are trained from scratch on Imagenet dataset

Reference NPU memory footprint on Imagenet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Series Internal RAM (KiB) External RAM (KiB) Weights Flash (KiB) STEdgeAI Core version
sqnxt23_x100_pt_224 Imagenet Int8 224×224×3 STM32N6 2086.45 3025 693.67 3.0.0
sqnxt23_x150_pt_224 Imagenet Int8 224×224×3 STM32N6 2087.48 6806.25 1453.99 3.0.0
sqnxt23_x200_pt_224 Imagenet Int8 224×224×3 STM32N6 2275.52 9075 2493.33 3.0.0
sqnxt23v5_x150_pt_224 Imagenet Int8 224×224×3 STM32N6 2087.48 6806.25 1879.24 3.0.0
sqnxt23v5_x200_pt_224 Imagenet Int8 224×224×3 STM32N6 2275.52 9075 3249.45 3.0.0

Reference NPU inference time on Imagenet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Board Execution Engine Inference time (ms) Inf / sec STEdgeAI Core version
sqnxt23_x100_pt_224 Imagenet Int8 224×224×3 STM32N6570-DK NPU/MCU 87.07 11.49 3.0.0
sqnxt23_x150_pt_224 Imagenet Int8 224×224×3 STM32N6570-DK NPU/MCU 127.46 7.85 3.0.0
sqnxt23_x200_pt_224 Imagenet Int8 224×224×3 STM32N6570-DK NPU/MCU 182.12 5.49 3.0.0
sqnxt23v5_x100_pt_224 Imagenet Int8 224×224×3 STM32N6570-DK NPU/MCU 86.37 11.58 3.0.0
sqnxt23v5_x150_pt_224 Imagenet Int8 224×224×3 STM32N6570-DK NPU/MCU 126.91 7.88 3.0.0
sqnxt23v5_x200_pt_224 Imagenet Int8 224×224×3 STM32N6570-DK NPU/MCU 181.01 5.52 3.0.0

Accuracy with Imagenet dataset

Model Format Resolution Top 1 Accuracy
sqnxt23_x100_pt Float 224x224x3 58.18 %
sqnxt23_x100_pt Int8 224x224x3 57.86 %
sqnxt23_x150_pt Float 224x224x3 66.17 %
sqnxt23_x150_pt Int8 224x224x3 65.48 %
sqnxt23_x200_pt Float 224x224x3 70.56 %
sqnxt23_x200_pt Int8 224x224x3 70.25 %
sqnxt23v5_x100_pt Float 224x224x3 59.85 %
sqnxt23v5_x100_pt Int8 224x224x3 59.57 %
sqnxt23v5_x150_pt Float 224x224x3 67.32 %
sqnxt23v5_x150_pt Int8 224x224x3 66.78 %
sqnxt23v5_x200_pt Float 224x224x3 71.42 %
sqnxt23v5_x200_pt Int8 224x224x3 71.02 %
Model Format Resolution Top 1 Accuracy
sqnxt23_x100_pt Float 224x224x3 58.18 %
sqnxt23_x100_pt Int8 224x224x3 57.86 %
sqnxt23_x150_pt Float 224x224x3 66.17 %
sqnxt23_x150_pt Int8 224x224x3 65.48 %
sqnxt23_x200_pt Float 224x224x3 70.56 %
sqnxt23_x200_pt Int8 224x224x3 70.25 %
sqnxt23v5_x100_pt Float 224x224x3 59.85 %
sqnxt23v5_x100_pt Int8 224x224x3 59.57 %
sqnxt23v5_x150_pt Float 224x224x3 67.32 %
sqnxt23v5_x150_pt Int8 224x224x3 66.78 %
sqnxt23v5_x200_pt Float 224x224x3 71.42 %
sqnxt23v5_x200_pt Int8 224x224x3 71.02 %

Retraining and Integration in a simple example:

Please refer to the stm32ai-modelzoo-services GitHub here

References

[1] - Dataset: Imagenet (ILSVRC 2012) — https://www.image-net.org/

[2] - Model: SqueezeNext — https://github.com/amirgholami/SqueezeNext

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for STMicroelectronics/sqnxt_pt