File size: 8,228 Bytes
27b3d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
---
language: en
license: mit
tags:
  - text-classification
  - code-quality
  - documentation
  - code-comments
  - developer-tools
datasets:
  - synthetic
metrics:
  - accuracy
  - f1
  - precision
  - recall
widget:
  - text: "This function calculates the Fibonacci sequence using dynamic programming to avoid redundant calculations. Time complexity: O(n), Space complexity: O(n)"
    example_title: "Excellent Comment"
  - text: "Calculates the sum of two numbers and returns the result"
    example_title: "Helpful Comment"
  - text: "does stuff with numbers"
    example_title: "Unclear Comment"
  - text: "DEPRECATED: Use calculate_new() instead. This method will be removed in v2.0"
    example_title: "Outdated Comment"
---

# Code Comment Quality Classifier ๐Ÿ”

## Model Description

This model automatically classifies code comments into four quality categories to help improve code documentation and review processes. It's designed to assist developers in maintaining high-quality code documentation by identifying comments that may need improvement.

**Categories:**
- ๐ŸŒŸ **Excellent**: Clear, comprehensive, and highly informative comments that explain the "why" and "how"
- โœ… **Helpful**: Good comments that add value but could be more detailed
- โš ๏ธ **Unclear**: Vague or confusing comments that don't provide sufficient information
- ๐Ÿšซ **Outdated**: Comments that may no longer reflect the current code or are marked as deprecated

## Intended Uses

### Primary Use Cases
- **Code Review Automation**: Automatically flag low-quality comments during pull request reviews
- **Documentation Quality Audits**: Scan codebases to identify areas needing documentation improvements
- **Developer Education**: Help developers learn what constitutes good code comments
- **IDE Integration**: Provide real-time feedback on comment quality while coding

### Out-of-Scope Use Cases
- Generating new comments (this is a classification model, not a generation model)
- Evaluating code quality (only evaluates comments, not the code itself)
- Security analysis or vulnerability detection
- Production-critical decision making without human review

## How to Use

### Quick Start

```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# Load model and tokenizer
model_name = "Snaseem2026/code-comment-classifier"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# Classify a comment
comment = "This function calculates fibonacci numbers using dynamic programming"
inputs = tokenizer(comment, return_tensors="pt", truncation=True, max_length=512)

with torch.no_grad():
    outputs = model(**inputs)
    predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
    predicted_class = torch.argmax(predictions, dim=-1).item()

labels = ["excellent", "helpful", "unclear", "outdated"]
print(f"Comment quality: {labels[predicted_class]}")
```

### Batch Processing

```python
comments = [
    "Handles user authentication and session management",
    "does stuff",
    "TODO: fix this later"
]

inputs = tokenizer(comments, return_tensors="pt", truncation=True, 
                   padding=True, max_length=512)

with torch.no_grad():
    outputs = model(**inputs)
    predictions = torch.argmax(outputs.logits, dim=-1)

for comment, pred in zip(comments, predictions):
    print(f"{comment}: {labels[pred.item()]}")
```

## Training Data

### Dataset
The model was trained on a synthetic dataset of code comments carefully crafted to represent the four quality categories. The training data consists of:

- **Total samples**: ~1,000 comments
- **Distribution**: Balanced across all four categories
- **Language**: English code comments
- **Sources**: Synthetic data based on common patterns in real-world code comments

### Data Creation
The synthetic dataset was created by:
1. Identifying common patterns in high-quality and low-quality code comments
2. Generating representative examples for each category
3. Creating variations to increase diversity
4. Ensuring balanced representation across all classes

**Note**: This model was trained on synthetic data. For production use, consider fine-tuning on domain-specific comments from your codebase.

## Training Procedure

### Preprocessing
- Text tokenization using DistilBERT tokenizer
- Maximum sequence length: 512 tokens
- Truncation and padding applied

### Training Hyperparameters

```yaml
- Base Model: distilbert-base-uncased
- Training Epochs: 3
- Batch Size: 16 (train), 32 (eval)
- Learning Rate: 2e-5
- Weight Decay: 0.01
- Warmup Steps: 500
- Optimizer: AdamW
```

### Training Infrastructure
- Framework: Hugging Face Transformers
- Hardware: CPU/GPU compatible
- Training Time: ~10-30 minutes (depending on hardware)

## Evaluation Results

### Metrics

The model achieves the following performance on the test set:

| Metric | Score |
|--------|-------|
| Accuracy | 0.9485 (94.85%) |
| Precision (weighted) | 0.9535 (95.35%) |
| Recall (weighted) | 0.9485 (94.85%) |
| F1 Score (weighted) | 0.9468 (94.68%) |

### Per-Class Performance

| Class | Precision | Recall | F1-Score |
|-------|-----------|--------|----------|
| Excellent | 1.0000 (100%) | 1.0000 (100%) | 1.0000 (100%) |
| Helpful | 0.8889 (88.9%) | 1.0000 (100%) | 0.9412 (94.1%) |
| Unclear | 1.0000 (100%) | 0.7917 (79.2%) | 0.8837 (88.4%) |
| Outdated | 0.9231 (92.3%) | 1.0000 (100%) | 0.9600 (96.0%) |

### Key Findings
- โœจ **Perfect classification** of excellent comments (100% precision & recall)
- ๐ŸŽฏ **Zero false negatives** for helpful and outdated comments
- โš ๏ธ Slight challenge distinguishing unclear comments from other categories
- ๐Ÿ“Š Strong overall performance with 94.85% accuracy

## Limitations

### Known Limitations

1. **Synthetic Training Data**: The model was trained on synthetic data and may not capture all nuances of real-world code comments
2. **Language**: Only trained on English comments
3. **Context**: Evaluates comments in isolation without code context
4. **Domain**: May perform differently on specialized domains (e.g., scientific computing, embedded systems)
5. **Subjectivity**: Comment quality can be subjective; the model reflects patterns in the training data

### Recommendations

- Use as a supplementary tool, not a replacement for human review
- Fine-tune on domain-specific data for better performance
- Validate predictions in your specific use case
- Combine with other code quality tools for comprehensive analysis

## Bias and Fairness

### Potential Biases

- **Style Bias**: May favor certain commenting styles over others
- **Verbosity Bias**: Longer comments may be rated higher regardless of actual quality
- **Pattern Bias**: Trained on specific patterns that may not represent all commenting approaches

### Mitigation Strategies

- Train on diverse comment styles
- Regular evaluation on real-world data
- User feedback integration
- Continuous model improvement

## Environmental Impact

- **Base Model**: DistilBERT (~66M parameters)
- **Carbon Footprint**: Minimal for training on small synthetic dataset
- **Inference**: Efficient, suitable for real-time applications

## Citation

If you use this model in your research or application, please cite:

```bibtex
@misc{code-comment-classifier-2026,
  author = {Naseem, Sharyar},
  title = {Code Comment Quality Classifier},
  year = {2026},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/Snaseem2026/code-comment-classifier}}
}
```

## Model Card Authors

- Sharyar Naseem (@Snaseem2026)

## Model Card Contact

For questions or feedback, please open an issue on the model's discussion tab or contact via Hugging Face.

## License

MIT License - See [LICENSE](LICENSE) file for details.

## Acknowledgments

- Built with [Hugging Face Transformers](https://huggingface.co/transformers/)
- Base model: [DistilBERT](https://huggingface.co/distilbert-base-uncased) by Hugging Face
- Inspired by the need for better code documentation practices

---

**Disclaimer**: This model is provided for educational and productivity purposes. Always apply human judgment when evaluating code quality and documentation.