Snaseem2026 commited on
Commit
27b3d90
·
verified ·
1 Parent(s): 7313550

Upload MODEL_CARD.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. MODEL_CARD.md +243 -0
MODEL_CARD.md ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ license: mit
4
+ tags:
5
+ - text-classification
6
+ - code-quality
7
+ - documentation
8
+ - code-comments
9
+ - developer-tools
10
+ datasets:
11
+ - synthetic
12
+ metrics:
13
+ - accuracy
14
+ - f1
15
+ - precision
16
+ - recall
17
+ widget:
18
+ - text: "This function calculates the Fibonacci sequence using dynamic programming to avoid redundant calculations. Time complexity: O(n), Space complexity: O(n)"
19
+ example_title: "Excellent Comment"
20
+ - text: "Calculates the sum of two numbers and returns the result"
21
+ example_title: "Helpful Comment"
22
+ - text: "does stuff with numbers"
23
+ example_title: "Unclear Comment"
24
+ - text: "DEPRECATED: Use calculate_new() instead. This method will be removed in v2.0"
25
+ example_title: "Outdated Comment"
26
+ ---
27
+
28
+ # Code Comment Quality Classifier 🔍
29
+
30
+ ## Model Description
31
+
32
+ This model automatically classifies code comments into four quality categories to help improve code documentation and review processes. It's designed to assist developers in maintaining high-quality code documentation by identifying comments that may need improvement.
33
+
34
+ **Categories:**
35
+ - 🌟 **Excellent**: Clear, comprehensive, and highly informative comments that explain the "why" and "how"
36
+ - ✅ **Helpful**: Good comments that add value but could be more detailed
37
+ - ⚠️ **Unclear**: Vague or confusing comments that don't provide sufficient information
38
+ - 🚫 **Outdated**: Comments that may no longer reflect the current code or are marked as deprecated
39
+
40
+ ## Intended Uses
41
+
42
+ ### Primary Use Cases
43
+ - **Code Review Automation**: Automatically flag low-quality comments during pull request reviews
44
+ - **Documentation Quality Audits**: Scan codebases to identify areas needing documentation improvements
45
+ - **Developer Education**: Help developers learn what constitutes good code comments
46
+ - **IDE Integration**: Provide real-time feedback on comment quality while coding
47
+
48
+ ### Out-of-Scope Use Cases
49
+ - Generating new comments (this is a classification model, not a generation model)
50
+ - Evaluating code quality (only evaluates comments, not the code itself)
51
+ - Security analysis or vulnerability detection
52
+ - Production-critical decision making without human review
53
+
54
+ ## How to Use
55
+
56
+ ### Quick Start
57
+
58
+ ```python
59
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
60
+ import torch
61
+
62
+ # Load model and tokenizer
63
+ model_name = "Snaseem2026/code-comment-classifier"
64
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
65
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
66
+
67
+ # Classify a comment
68
+ comment = "This function calculates fibonacci numbers using dynamic programming"
69
+ inputs = tokenizer(comment, return_tensors="pt", truncation=True, max_length=512)
70
+
71
+ with torch.no_grad():
72
+ outputs = model(**inputs)
73
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
74
+ predicted_class = torch.argmax(predictions, dim=-1).item()
75
+
76
+ labels = ["excellent", "helpful", "unclear", "outdated"]
77
+ print(f"Comment quality: {labels[predicted_class]}")
78
+ ```
79
+
80
+ ### Batch Processing
81
+
82
+ ```python
83
+ comments = [
84
+ "Handles user authentication and session management",
85
+ "does stuff",
86
+ "TODO: fix this later"
87
+ ]
88
+
89
+ inputs = tokenizer(comments, return_tensors="pt", truncation=True,
90
+ padding=True, max_length=512)
91
+
92
+ with torch.no_grad():
93
+ outputs = model(**inputs)
94
+ predictions = torch.argmax(outputs.logits, dim=-1)
95
+
96
+ for comment, pred in zip(comments, predictions):
97
+ print(f"{comment}: {labels[pred.item()]}")
98
+ ```
99
+
100
+ ## Training Data
101
+
102
+ ### Dataset
103
+ The model was trained on a synthetic dataset of code comments carefully crafted to represent the four quality categories. The training data consists of:
104
+
105
+ - **Total samples**: ~1,000 comments
106
+ - **Distribution**: Balanced across all four categories
107
+ - **Language**: English code comments
108
+ - **Sources**: Synthetic data based on common patterns in real-world code comments
109
+
110
+ ### Data Creation
111
+ The synthetic dataset was created by:
112
+ 1. Identifying common patterns in high-quality and low-quality code comments
113
+ 2. Generating representative examples for each category
114
+ 3. Creating variations to increase diversity
115
+ 4. Ensuring balanced representation across all classes
116
+
117
+ **Note**: This model was trained on synthetic data. For production use, consider fine-tuning on domain-specific comments from your codebase.
118
+
119
+ ## Training Procedure
120
+
121
+ ### Preprocessing
122
+ - Text tokenization using DistilBERT tokenizer
123
+ - Maximum sequence length: 512 tokens
124
+ - Truncation and padding applied
125
+
126
+ ### Training Hyperparameters
127
+
128
+ ```yaml
129
+ - Base Model: distilbert-base-uncased
130
+ - Training Epochs: 3
131
+ - Batch Size: 16 (train), 32 (eval)
132
+ - Learning Rate: 2e-5
133
+ - Weight Decay: 0.01
134
+ - Warmup Steps: 500
135
+ - Optimizer: AdamW
136
+ ```
137
+
138
+ ### Training Infrastructure
139
+ - Framework: Hugging Face Transformers
140
+ - Hardware: CPU/GPU compatible
141
+ - Training Time: ~10-30 minutes (depending on hardware)
142
+
143
+ ## Evaluation Results
144
+
145
+ ### Metrics
146
+
147
+ The model achieves the following performance on the test set:
148
+
149
+ | Metric | Score |
150
+ |--------|-------|
151
+ | Accuracy | 0.9485 (94.85%) |
152
+ | Precision (weighted) | 0.9535 (95.35%) |
153
+ | Recall (weighted) | 0.9485 (94.85%) |
154
+ | F1 Score (weighted) | 0.9468 (94.68%) |
155
+
156
+ ### Per-Class Performance
157
+
158
+ | Class | Precision | Recall | F1-Score |
159
+ |-------|-----------|--------|----------|
160
+ | Excellent | 1.0000 (100%) | 1.0000 (100%) | 1.0000 (100%) |
161
+ | Helpful | 0.8889 (88.9%) | 1.0000 (100%) | 0.9412 (94.1%) |
162
+ | Unclear | 1.0000 (100%) | 0.7917 (79.2%) | 0.8837 (88.4%) |
163
+ | Outdated | 0.9231 (92.3%) | 1.0000 (100%) | 0.9600 (96.0%) |
164
+
165
+ ### Key Findings
166
+ - ✨ **Perfect classification** of excellent comments (100% precision & recall)
167
+ - 🎯 **Zero false negatives** for helpful and outdated comments
168
+ - ⚠️ Slight challenge distinguishing unclear comments from other categories
169
+ - 📊 Strong overall performance with 94.85% accuracy
170
+
171
+ ## Limitations
172
+
173
+ ### Known Limitations
174
+
175
+ 1. **Synthetic Training Data**: The model was trained on synthetic data and may not capture all nuances of real-world code comments
176
+ 2. **Language**: Only trained on English comments
177
+ 3. **Context**: Evaluates comments in isolation without code context
178
+ 4. **Domain**: May perform differently on specialized domains (e.g., scientific computing, embedded systems)
179
+ 5. **Subjectivity**: Comment quality can be subjective; the model reflects patterns in the training data
180
+
181
+ ### Recommendations
182
+
183
+ - Use as a supplementary tool, not a replacement for human review
184
+ - Fine-tune on domain-specific data for better performance
185
+ - Validate predictions in your specific use case
186
+ - Combine with other code quality tools for comprehensive analysis
187
+
188
+ ## Bias and Fairness
189
+
190
+ ### Potential Biases
191
+
192
+ - **Style Bias**: May favor certain commenting styles over others
193
+ - **Verbosity Bias**: Longer comments may be rated higher regardless of actual quality
194
+ - **Pattern Bias**: Trained on specific patterns that may not represent all commenting approaches
195
+
196
+ ### Mitigation Strategies
197
+
198
+ - Train on diverse comment styles
199
+ - Regular evaluation on real-world data
200
+ - User feedback integration
201
+ - Continuous model improvement
202
+
203
+ ## Environmental Impact
204
+
205
+ - **Base Model**: DistilBERT (~66M parameters)
206
+ - **Carbon Footprint**: Minimal for training on small synthetic dataset
207
+ - **Inference**: Efficient, suitable for real-time applications
208
+
209
+ ## Citation
210
+
211
+ If you use this model in your research or application, please cite:
212
+
213
+ ```bibtex
214
+ @misc{code-comment-classifier-2026,
215
+ author = {Naseem, Sharyar},
216
+ title = {Code Comment Quality Classifier},
217
+ year = {2026},
218
+ publisher = {Hugging Face},
219
+ howpublished = {\url{https://huggingface.co/Snaseem2026/code-comment-classifier}}
220
+ }
221
+ ```
222
+
223
+ ## Model Card Authors
224
+
225
+ - Sharyar Naseem (@Snaseem2026)
226
+
227
+ ## Model Card Contact
228
+
229
+ For questions or feedback, please open an issue on the model's discussion tab or contact via Hugging Face.
230
+
231
+ ## License
232
+
233
+ MIT License - See [LICENSE](LICENSE) file for details.
234
+
235
+ ## Acknowledgments
236
+
237
+ - Built with [Hugging Face Transformers](https://huggingface.co/transformers/)
238
+ - Base model: [DistilBERT](https://huggingface.co/distilbert-base-uncased) by Hugging Face
239
+ - Inspired by the need for better code documentation practices
240
+
241
+ ---
242
+
243
+ **Disclaimer**: This model is provided for educational and productivity purposes. Always apply human judgment when evaluating code quality and documentation.