File size: 4,653 Bytes
8acf936 ff4fad7 8acf936 ff4fad7 8acf936 ff4fad7 8acf936 ff4fad7 8acf936 3ab633a c809ee9 7313550 c809ee9 7313550 c809ee9 7313550 c809ee9 7313550 c809ee9 7313550 c809ee9 7313550 3ab633a c809ee9 7313550 c809ee9 3ab633a c809ee9 7313550 c809ee9 7313550 3ab633a 7313550 3ab633a 7313550 3ab633a 7313550 3ab633a 7313550 3ab633a 7313550 3ab633a 7313550 3ab633a 7313550 3ab633a 7313550 3ab633a 7313550 3ab633a 7313550 3ab633a 7313550 3ab633a 7313550 3ab633a 7313550 3ab633a c809ee9 7313550 c809ee9 7313550 c809ee9 7313550 c809ee9 7313550 c809ee9 7313550 c809ee9 7313550 c809ee9 7313550 c809ee9 ae0c531 c809ee9 3ab633a c809ee9 7313550 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
language: en
license: mit
tags:
- text-classification
- code-quality
- documentation
- code-comments
- developer-tools
- distilbert
datasets:
- synthetic
metrics:
- accuracy
- f1
- precision
- recall
pipeline_tag: text-classification
widget:
- text: 'This function calculates the Fibonacci sequence using dynamic programming
to avoid redundant calculations. Time complexity: O(n), Space complexity: O(n)'
example_title: Excellent Comment
- text: Calculates the sum of two numbers and returns the result
example_title: Helpful Comment
- text: does stuff with numbers
example_title: Unclear Comment
- text: 'DEPRECATED: Use calculate_new() instead. This method will be removed in v2.0'
example_title: Outdated Comment
---
# Code Comment Quality Classifier ๐
A machine learning model that automatically classifies code comments into quality categories to help improve code documentation and review processes.
## ๐ฏ What Does This Model Do?
This model analyzes code comments and classifies them into four categories:
- **Excellent**: Clear, comprehensive, and highly informative comments
- **Helpful**: Good comments that add value but could be improved
- **Unclear**: Vague or confusing comments that don't add much value
- **Outdated**: Comments that may no longer reflect the current code
## ๐ Quick Start
### Installation
```bash
pip install -r requirements.txt
```
### Using the Model
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
# Load the model and tokenizer
model_name = "Snaseem2026/code-comment-classifier"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Classify a comment
comment = "This function calculates the fibonacci sequence using dynamic programming"
inputs = tokenizer(comment, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(predictions, dim=-1).item()
labels = ["excellent", "helpful", "unclear", "outdated"]
print(f"Comment quality: {labels[predicted_class]}")
```
## ๐๏ธ Training the Model
To train the model on your own data:
```bash
python train.py --config config.yaml
```
To generate synthetic training data:
```bash
python scripts/generate_data.py
```
## ๐ Model Details
- **Base Model**: DistilBERT (distilbert-base-uncased)
- **Task**: Multi-class text classification
- **Classes**: 4 (excellent, helpful, unclear, outdated)
- **Training Data**: Synthetic code comments with quality labels
- **License**: MIT
## ๐ Use Cases
- **Code Review Automation**: Automatically flag low-quality comments during PR reviews
- **Documentation Quality Checks**: Audit codebases for documentation quality
- **Developer Education**: Help developers learn what makes good code comments
- **IDE Integration**: Real-time feedback on comment quality while coding
## ๐ Project Structure
```
.
โโโ README.md
โโโ LICENSE
โโโ requirements.txt
โโโ config.yaml
โโโ train.py # Main training script
โโโ inference.py # Inference script
โโโ src/
โ โโโ __init__.py
โ โโโ data_loader.py # Data loading utilities
โ โโโ model.py # Model definition
โ โโโ utils.py # Helper functions
โโโ scripts/
โ โโโ generate_data.py # Generate synthetic training data
โ โโโ evaluate.py # Evaluation script
โ โโโ upload_to_hub.py # Upload model to Hugging Face Hub
โโโ data/
โ โโโ .gitkeep
โโโ MODEL_CARD.md # Hugging Face model card
```
## ๐ค Contributing
This is an open-source project! Contributions are welcome. Please feel free to:
- Report bugs or issues
- Suggest new features
- Submit pull requests
- Improve documentation
## ๐ License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## ๐ Acknowledgments
- Built with [Hugging Face Transformers](https://huggingface.co/transformers/)
- Base model: [DistilBERT](https://huggingface.co/distilbert-base-uncased)
## ๐ฎ Contact
For questions or feedback, please open a discussion on the model's [Hugging Face page](https://huggingface.co/Snaseem2026/code-comment-classifier/discussions) or reach out via Hugging Face.
---
**Note**: This model is designed for educational and productivity purposes. Always review automated suggestions with human judgment.
|