File size: 4,653 Bytes
8acf936
 
 
 
ff4fad7
 
 
 
 
 
8acf936
ff4fad7
8acf936
ff4fad7
 
 
 
8acf936
 
ff4fad7
 
 
 
 
 
 
 
 
8acf936
 
3ab633a
c809ee9
7313550
c809ee9
7313550
c809ee9
7313550
 
 
 
 
c809ee9
7313550
c809ee9
7313550
c809ee9
7313550
 
3ab633a
c809ee9
7313550
c809ee9
3ab633a
 
 
c809ee9
7313550
 
 
 
c809ee9
7313550
 
 
3ab633a
7313550
 
 
 
3ab633a
7313550
 
 
3ab633a
7313550
3ab633a
7313550
3ab633a
7313550
 
3ab633a
 
7313550
3ab633a
7313550
 
3ab633a
 
7313550
3ab633a
7313550
 
 
 
 
3ab633a
7313550
3ab633a
7313550
 
 
 
3ab633a
7313550
3ab633a
 
7313550
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ab633a
c809ee9
7313550
c809ee9
7313550
 
 
 
 
c809ee9
7313550
c809ee9
7313550
c809ee9
7313550
c809ee9
7313550
 
c809ee9
7313550
c809ee9
ae0c531
c809ee9
3ab633a
c809ee9
7313550
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
language: en
license: mit
tags:
- text-classification
- code-quality
- documentation
- code-comments
- developer-tools
- distilbert
datasets:
- synthetic
metrics:
- accuracy
- f1
- precision
- recall
pipeline_tag: text-classification
widget:
- text: 'This function calculates the Fibonacci sequence using dynamic programming
    to avoid redundant calculations. Time complexity: O(n), Space complexity: O(n)'
  example_title: Excellent Comment
- text: Calculates the sum of two numbers and returns the result
  example_title: Helpful Comment
- text: does stuff with numbers
  example_title: Unclear Comment
- text: 'DEPRECATED: Use calculate_new() instead. This method will be removed in v2.0'
  example_title: Outdated Comment
---

# Code Comment Quality Classifier ๐Ÿ”

A machine learning model that automatically classifies code comments into quality categories to help improve code documentation and review processes.

## ๐ŸŽฏ What Does This Model Do?

This model analyzes code comments and classifies them into four categories:
- **Excellent**: Clear, comprehensive, and highly informative comments
- **Helpful**: Good comments that add value but could be improved
- **Unclear**: Vague or confusing comments that don't add much value
- **Outdated**: Comments that may no longer reflect the current code

## ๐Ÿš€ Quick Start

### Installation

```bash
pip install -r requirements.txt
```

### Using the Model

```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

# Load the model and tokenizer
model_name = "Snaseem2026/code-comment-classifier"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

# Classify a comment
comment = "This function calculates the fibonacci sequence using dynamic programming"
inputs = tokenizer(comment, return_tensors="pt", truncation=True, max_length=512)

with torch.no_grad():
    outputs = model(**inputs)
    predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
    predicted_class = torch.argmax(predictions, dim=-1).item()

labels = ["excellent", "helpful", "unclear", "outdated"]
print(f"Comment quality: {labels[predicted_class]}")
```

## ๐Ÿ‹๏ธ Training the Model

To train the model on your own data:

```bash
python train.py --config config.yaml
```

To generate synthetic training data:

```bash
python scripts/generate_data.py
```

## ๐Ÿ“Š Model Details

- **Base Model**: DistilBERT (distilbert-base-uncased)
- **Task**: Multi-class text classification
- **Classes**: 4 (excellent, helpful, unclear, outdated)
- **Training Data**: Synthetic code comments with quality labels
- **License**: MIT

## ๐ŸŽ“ Use Cases

- **Code Review Automation**: Automatically flag low-quality comments during PR reviews
- **Documentation Quality Checks**: Audit codebases for documentation quality
- **Developer Education**: Help developers learn what makes good code comments
- **IDE Integration**: Real-time feedback on comment quality while coding

## ๐Ÿ“ Project Structure

```
.
โ”œโ”€โ”€ README.md
โ”œโ”€โ”€ LICENSE
โ”œโ”€โ”€ requirements.txt
โ”œโ”€โ”€ config.yaml
โ”œโ”€โ”€ train.py                    # Main training script
โ”œโ”€โ”€ inference.py                # Inference script
โ”œโ”€โ”€ src/
โ”‚   โ”œโ”€โ”€ __init__.py
โ”‚   โ”œโ”€โ”€ data_loader.py         # Data loading utilities
โ”‚   โ”œโ”€โ”€ model.py               # Model definition
โ”‚   โ””โ”€โ”€ utils.py               # Helper functions
โ”œโ”€โ”€ scripts/
โ”‚   โ”œโ”€โ”€ generate_data.py       # Generate synthetic training data
โ”‚   โ”œโ”€โ”€ evaluate.py            # Evaluation script
โ”‚   โ””โ”€โ”€ upload_to_hub.py       # Upload model to Hugging Face Hub
โ”œโ”€โ”€ data/
โ”‚   โ””โ”€โ”€ .gitkeep
โ””โ”€โ”€ MODEL_CARD.md              # Hugging Face model card
```

## ๐Ÿค Contributing

This is an open-source project! Contributions are welcome. Please feel free to:
- Report bugs or issues
- Suggest new features
- Submit pull requests
- Improve documentation

## ๐Ÿ“ License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## ๐Ÿ™ Acknowledgments

- Built with [Hugging Face Transformers](https://huggingface.co/transformers/)
- Base model: [DistilBERT](https://huggingface.co/distilbert-base-uncased)

## ๐Ÿ“ฎ Contact

For questions or feedback, please open a discussion on the model's [Hugging Face page](https://huggingface.co/Snaseem2026/code-comment-classifier/discussions) or reach out via Hugging Face.

---

**Note**: This model is designed for educational and productivity purposes. Always review automated suggestions with human judgment.