Audio-to-Audio
English
cn
CleanMel / app.py
SaoYear's picture
Upload folder using huggingface_hub
cf82a4e verified
import torch
import spaces
import tempfile
import soundfile as sf
import gradio as gr
import librosa as lb
import yaml
import numpy as np
import matplotlib.pyplot as plt
from model.cleanmel import CleanMel
from model.vocos.pretrained import Vocos
from model.stft import InputSTFT, TargetMel
DEVICE = torch.device("cuda:5")
def read_audio(file_path):
audio, sample_rate = sf.read(file_path)
if audio.ndim > 1:
audio = audio[:, 0]
if sample_rate != 16000:
audio = lb.resample(audio, orig_sr=sample_rate, target_sr=16000)
sample_rate = 16000
return torch.tensor(audio).float().squeeze().unsqueeze(0)
def stft(audio):
transform = InputSTFT(
n_fft=512,
n_win=512,
n_hop=128,
normalize=False,
center=True,
onesided=True,
online=False
).to(DEVICE)
return transform(audio)
def mel_transform(audio, X_norm):
transform = TargetMel(
sample_rate=16000,
n_fft=512,
n_win=512,
n_hop=128,
n_mels=80,
f_min=0,
f_max=8000,
power=2,
center=True,
normalize=False,
onesided=True,
mel_norm="slaney",
mel_scale="slaney",
librosa_mel=True,
online=False
).to(DEVICE)
return transform(audio, X_norm)
def load_cleanmel(model_name):
model_config = f"./configs/cleanmel_offline.yaml"
model_config = yaml.safe_load(open(model_config, "r"))["model"]["arch"]["init_args"]
cleanmel = CleanMel(**model_config)
cleanmel.load_state_dict(torch.load(f"./ckpts/CleanMel/{model_name}.ckpt"))
return cleanmel.eval()
def load_vocos(model_name):
vocos = Vocos.from_hparams(config_path="./configs/vocos_offline.yaml")
vocos = Vocos.from_pretrained(None, model_path=f"./ckpts/Vocos/{model_name}.pt", model=vocos)
return vocos.eval()
def get_mrm_pred(Y_hat, x, X_norm):
X_noisy = mel_transform(x, X_norm)
Y_hat = Y_hat.squeeze()
Y_hat = torch.square(Y_hat * (torch.sqrt(X_noisy) + 1e-10))
return Y_hat
def safe_log(x):
return torch.log(torch.clip(x, min=1e-5))
@spaces.GPU
@torch.inference_mode()
def enhance_cleanmel_L_mask(audio_path):
model = load_cleanmel("offline_CleanMel_L_mask").to(DEVICE)
vocos = load_vocos("vocos_offline").to(DEVICE)
x = read_audio(audio_path).to(DEVICE)
X, X_norm = stft(x)
Y_hat = model(X)
MRM_hat = torch.sigmoid(Y_hat)
Y_hat = get_mrm_pred(MRM_hat, x, X_norm)
logMel_hat = safe_log(Y_hat)
y_hat = vocos(logMel_hat, X_norm)
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
sf.write(tmp_file.name, y_hat.squeeze().cpu().numpy(), 16000)
with tempfile.NamedTemporaryFile(suffix='.npy', delete=False) as tmp_logmel_np_file:
np.save(tmp_logmel_np_file.name, logMel_hat.squeeze().cpu().numpy())
logMel_img = logMel_hat.squeeze().cpu().numpy()[::-1, :]
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp_logmel_img:
# give a plt figure size according to the logMel shape
plt.figure(figsize=(logMel_img.shape[1] / 100, logMel_img.shape[0] / 50))
plt.clf()
plt.imshow(logMel_img, vmin=-11, cmap="jet")
plt.tight_layout()
plt.ylabel("Mel bands")
plt.xlabel("Time (second)")
plt.yticks([0, 80], [80, 0])
dur = x.shape[-1] / 16000
xticks = [int(x) for x in np.linspace(0, logMel_img.shape[-1], 11)]
xticks_str = ["{:.1f}".format(x) for x in np.linspace(0, dur, 11)]
plt.xticks(xticks, xticks_str)
plt.savefig(tmp_logmel_img.name)
return tmp_file.name, tmp_logmel_img.name, tmp_logmel_np_file.name
if __name__ == "__main__":
demo = gr.Blocks()
with gr.Blocks(title="CleanMel Demo") as demo:
gr.Markdown("## CleanMel Demo")
gr.Markdown("This demo showcases the CleanMel model for speech enhancement.")
with gr.Row():
audio_input = gr.Audio(label="Input Audio", type="filepath", sources="upload")
enhance_button = gr.Button("Enhance Audio")
output_audio = gr.Audio(label="Enhanced Audio", type="filepath")
output_mel = gr.Image(label="Output LogMel Spectrogram", type="filepath", visible=True)
output_np = gr.File(label="Enhanced LogMel Spec. (.npy)", type="filepath")
enhance_button.click(
enhance_cleanmel_L_mask,
inputs=audio_input,
outputs=[output_audio, output_mel, output_np]
)
demo.launch(debug=False, share=True)