llama

This model is a fine-tuned version of /remote-home1/yli/Model/Generator/Llama3_1_hf/8B/base on the 2wikimultihopqa_train, the hotpotqa_train and the musique_train datasets. It achieves the following results on the evaluation set:

  • Loss: 0.1818

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss
0.2053 0.1997 500 0.1904
0.2035 0.3994 1000 0.1856
0.1931 0.5990 1500 0.1751
0.187 0.7987 2000 0.1665
0.1916 0.9984 2500 0.1609
0.1085 1.1981 3000 0.1631
0.1153 1.3978 3500 0.1600
0.1205 1.5974 4000 0.1545
0.102 1.7971 4500 0.1496
0.0737 1.9968 5000 0.1455
0.0261 2.1965 5500 0.1799
0.0349 2.3962 6000 0.1782
0.0269 2.5958 6500 0.1810
0.0296 2.7955 7000 0.1819
0.0258 2.9952 7500 0.1818

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
-
Safetensors
Model size
8B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Yuan-Li-FNLP/R3-RAG-CS-Llama

Finetuned
(1715)
this model