llama
This model is a fine-tuned version of /remote-home1/yli/Model/Generator/Llama3_1_hf/8B/base on the 2wikimultihopqa_train, the hotpotqa_train and the musique_train datasets. It achieves the following results on the evaluation set:
- Loss: 0.1818
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 0.2053 | 0.1997 | 500 | 0.1904 |
| 0.2035 | 0.3994 | 1000 | 0.1856 |
| 0.1931 | 0.5990 | 1500 | 0.1751 |
| 0.187 | 0.7987 | 2000 | 0.1665 |
| 0.1916 | 0.9984 | 2500 | 0.1609 |
| 0.1085 | 1.1981 | 3000 | 0.1631 |
| 0.1153 | 1.3978 | 3500 | 0.1600 |
| 0.1205 | 1.5974 | 4000 | 0.1545 |
| 0.102 | 1.7971 | 4500 | 0.1496 |
| 0.0737 | 1.9968 | 5000 | 0.1455 |
| 0.0261 | 2.1965 | 5500 | 0.1799 |
| 0.0349 | 2.3962 | 6000 | 0.1782 |
| 0.0269 | 2.5958 | 6500 | 0.1810 |
| 0.0296 | 2.7955 | 7000 | 0.1819 |
| 0.0258 | 2.9952 | 7500 | 0.1818 |
Framework versions
- Transformers 4.46.1
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- -
Model tree for Yuan-Li-FNLP/R3-RAG-CS-Llama
Base model
meta-llama/Llama-3.1-8B