|
|
import copy |
|
|
import logging |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
import random |
|
|
import cv2 |
|
|
|
|
|
from detectron2.config import configurable |
|
|
from detectron2.data import detection_utils as utils |
|
|
from detectron2.data import transforms as T |
|
|
from detectron2.structures import BitMasks |
|
|
from pycocotools import mask as coco_mask |
|
|
from pycocotools.mask import encode, decode, frPyObjects |
|
|
|
|
|
|
|
|
def draw_circle(mask, center, radius): |
|
|
y, x = np.ogrid[:mask.shape[0], :mask.shape[1]] |
|
|
distance = np.sqrt((x - center[1]) ** 2 + (y - center[0]) ** 2) |
|
|
mask[distance <= radius] = 1 |
|
|
|
|
|
|
|
|
def enhance_with_circles(binary_mask, radius=5): |
|
|
if not isinstance(binary_mask, np.ndarray): |
|
|
binary_mask = np.array(binary_mask) |
|
|
|
|
|
binary_mask = binary_mask.astype(np.uint8) |
|
|
|
|
|
output_mask = np.zeros_like(binary_mask, dtype=np.uint8) |
|
|
points = np.argwhere(binary_mask == 1) |
|
|
for point in points: |
|
|
draw_circle(output_mask, (point[0], point[1]), radius) |
|
|
return output_mask |
|
|
|
|
|
|
|
|
def is_mask_non_empty(rle_mask): |
|
|
if rle_mask is None: |
|
|
return False |
|
|
binary_mask = decode(rle_mask) |
|
|
return binary_mask.sum() > 0 |
|
|
|
|
|
|
|
|
def convert_coco_poly_to_mask(segmentations, height, width): |
|
|
masks = [] |
|
|
for polygons in segmentations: |
|
|
rles = coco_mask.frPyObjects(polygons, height, width) |
|
|
mask = coco_mask.decode(rles) |
|
|
if len(mask.shape) < 3: |
|
|
mask = mask[..., None] |
|
|
mask = torch.as_tensor(mask, dtype=torch.uint8) |
|
|
mask = mask.any(dim=2) |
|
|
masks.append(mask) |
|
|
if masks: |
|
|
masks = torch.stack(masks, dim=0) |
|
|
else: |
|
|
masks = torch.zeros((0, height, width), dtype=torch.uint8) |
|
|
return masks |
|
|
|
|
|
|
|
|
def build_transform_gen(cfg): |
|
|
""" |
|
|
Create a list of default :class:`Augmentation` from config. |
|
|
Now it includes resizing and flipping. |
|
|
Returns: |
|
|
list[Augmentation] |
|
|
""" |
|
|
image_size = cfg.INPUT.IMAGE_SIZE |
|
|
min_scale = cfg.INPUT.MIN_SCALE |
|
|
max_scale = cfg.INPUT.MAX_SCALE |
|
|
|
|
|
augmentation = [] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
augmentation.extend([ |
|
|
|
|
|
|
|
|
|
|
|
T.ResizeShortestEdge( |
|
|
short_edge_length=image_size, max_size=image_size |
|
|
), |
|
|
T.FixedSizeCrop(crop_size=(image_size, image_size), seg_pad_value=0), |
|
|
]) |
|
|
|
|
|
return augmentation |
|
|
|
|
|
|
|
|
class COCOInstanceNewBaselineDatasetMapper: |
|
|
""" |
|
|
A callable which takes a dataset dict in Detectron2 Dataset format, |
|
|
and map it into a format used by MaskFormer. |
|
|
|
|
|
This dataset mapper applies the same transformation as DETR for COCO panoptic segmentation. |
|
|
|
|
|
The callable currently does the following: |
|
|
|
|
|
1. Read the image from "file_name" |
|
|
2. Applies geometric transforms to the image and annotation |
|
|
3. Find and applies suitable cropping to the image and annotation |
|
|
4. Prepare image and annotation to Tensors |
|
|
""" |
|
|
|
|
|
def __init__(self, cfg): |
|
|
""" |
|
|
NOTE: this interface is experimental. |
|
|
Args: |
|
|
is_train: for training or inference |
|
|
augmentations: a list of augmentations or deterministic transforms to apply |
|
|
tfm_gens: data augmentation |
|
|
image_format: an image format supported by :func:`detection_utils.read_image`. |
|
|
""" |
|
|
self.tfm_gens = build_transform_gen(cfg) |
|
|
self.pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1) |
|
|
self.pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1) |
|
|
|
|
|
@classmethod |
|
|
def from_config(cls, cfg, is_train=True): |
|
|
|
|
|
tfm_gens = build_transform_gen(cfg, is_train) |
|
|
|
|
|
ret = { |
|
|
"is_train": is_train, |
|
|
"tfm_gens": tfm_gens, |
|
|
"image_format": cfg.INPUT.FORMAT, |
|
|
} |
|
|
return ret |
|
|
|
|
|
def preprocess(self, dataset_dict, region_mask_type=None, mask_format='polygon'): |
|
|
""" |
|
|
Args: |
|
|
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. |
|
|
|
|
|
Returns: |
|
|
dict: a format that builtin models in detectron2 accept |
|
|
""" |
|
|
dataset_dict = copy.deepcopy(dataset_dict) |
|
|
if isinstance(dataset_dict["file_name"],str): |
|
|
image = utils.read_image(dataset_dict["file_name"], format='RGB') |
|
|
else: |
|
|
image = np.array(dataset_dict["file_name"]) |
|
|
|
|
|
|
|
|
utils.check_image_size(dataset_dict, image) |
|
|
utils.check_image_size(dataset_dict, image) |
|
|
|
|
|
gt_masks_list = [] |
|
|
for ann in dataset_dict["annotations"]: |
|
|
mask_tmp = decode(ann["segmentation"]) |
|
|
gt_masks_list.append(mask_tmp) |
|
|
dataset_dict["gt_mask_list"] = gt_masks_list |
|
|
dataset_dict["vp_file_path"] = dataset_dict["vp_image"] |
|
|
|
|
|
padding_mask = np.ones(image.shape[:2]) |
|
|
|
|
|
image, transforms = T.apply_transform_gens(self.tfm_gens, image) |
|
|
|
|
|
padding_mask = transforms.apply_segmentation(padding_mask) |
|
|
padding_mask = ~ padding_mask.astype(bool) |
|
|
|
|
|
image_shape = image.shape[:2] |
|
|
image = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) |
|
|
dataset_dict["image"] = (image - self.pixel_mean) / self.pixel_std |
|
|
dataset_dict["padding_mask"] = torch.as_tensor(np.ascontiguousarray(padding_mask)) |
|
|
dataset_dict['transforms'] = transforms |
|
|
region_masks = [] |
|
|
|
|
|
if 'vp_image' in dataset_dict: |
|
|
if isinstance(dataset_dict["vp_image"], str): |
|
|
vp_image = utils.read_image(dataset_dict["vp_image"], format='RGB') |
|
|
else: |
|
|
vp_image = np.array(dataset_dict["vp_image"]) |
|
|
|
|
|
vp_padding_mask = np.ones(vp_image.shape[:2]) |
|
|
|
|
|
vp_image, vp_transforms = T.apply_transform_gens(self.tfm_gens, vp_image) |
|
|
vp_padding_mask = vp_transforms.apply_segmentation(vp_padding_mask) |
|
|
vp_padding_mask = ~ vp_padding_mask.astype(bool) |
|
|
|
|
|
|
|
|
vp_image_shape = vp_image.shape[:2] |
|
|
vp_image = torch.as_tensor(np.ascontiguousarray(vp_image.transpose(2, 0, 1))) |
|
|
dataset_dict["vp_image"] = (vp_image - self.pixel_mean) / self.pixel_std |
|
|
dataset_dict["vp_padding_mask"] = torch.as_tensor(np.ascontiguousarray(vp_padding_mask)) |
|
|
dataset_dict['vp_transforms'] = vp_transforms |
|
|
vp_region_masks = [] |
|
|
vp_fill_number = [] |
|
|
vp_annos = [ |
|
|
utils.transform_instance_annotations(obj, vp_transforms, vp_image_shape) |
|
|
for obj in dataset_dict.pop("vp_annotations") |
|
|
if obj.get("iscrowd", 0) == 0 |
|
|
] |
|
|
if len(vp_annos) == 0: |
|
|
print('error') |
|
|
else: |
|
|
for vp_anno in vp_annos: |
|
|
vp_region_mask = vp_anno['segmentation'] |
|
|
vp_fill_number.append(int(vp_anno['category_id'])) |
|
|
|
|
|
vp_region_masks.append(vp_region_mask) |
|
|
|
|
|
|
|
|
|
|
|
if "annotations" in dataset_dict: |
|
|
for anno in dataset_dict["annotations"]: |
|
|
anno.pop("keypoints", None) |
|
|
|
|
|
annotations = dataset_dict['annotations'] |
|
|
|
|
|
annos = [ |
|
|
utils.transform_instance_annotations(obj, transforms, image_shape) |
|
|
for obj in dataset_dict.pop("annotations") |
|
|
if obj.get("iscrowd", 0) == 0 |
|
|
] |
|
|
if len(annos) ==0: |
|
|
print('error') |
|
|
|
|
|
filter_annos = [] |
|
|
|
|
|
if 'mask_visual_prompt_mask' in annos[0]: |
|
|
if region_mask_type is None: |
|
|
region_mask_type = ['mask_visual_prompt_mask'] |
|
|
|
|
|
|
|
|
for anno in annos: |
|
|
non_empty_masks = [] |
|
|
for mask_type in region_mask_type: |
|
|
if is_mask_non_empty(anno[mask_type]): |
|
|
non_empty_masks.append(mask_type) |
|
|
|
|
|
if len(non_empty_masks) == 0: |
|
|
continue |
|
|
used_mask_type = random.choice(non_empty_masks) |
|
|
region_mask = decode(anno[used_mask_type]) |
|
|
if used_mask_type in ['point_visual_prompt_mask', 'scribble_visual_prompt_mask']: |
|
|
radius = 10 if used_mask_type == 'point_visual_prompt_mask' else 5 |
|
|
region_mask = enhance_with_circles(region_mask, radius) |
|
|
scale_region_mask = transforms.apply_segmentation(region_mask) |
|
|
region_masks.append(scale_region_mask) |
|
|
filter_annos.append(anno) |
|
|
if len(filter_annos) == 0: |
|
|
filter_annos = annos |
|
|
|
|
|
|
|
|
|
|
|
instances = utils.annotations_to_instances(filter_annos, image_shape, mask_format=mask_format) |
|
|
if 'lvis_category_id' in filter_annos[0]: |
|
|
lvis_classes = [int(obj["lvis_category_id"]) for obj in annos] |
|
|
lvis_classes = torch.tensor(lvis_classes, dtype=torch.int64) |
|
|
instances.lvis_classes = lvis_classes |
|
|
instances.gt_boxes = instances.gt_masks.get_bounding_boxes() |
|
|
|
|
|
|
|
|
non_empty_instance_mask = [len(obj.get('segmentation', [])) > 0 for obj in filter_annos] |
|
|
|
|
|
|
|
|
instances = utils.filter_empty_instances(instances) |
|
|
|
|
|
|
|
|
h, w = instances.image_size |
|
|
|
|
|
if hasattr(instances, 'gt_masks'): |
|
|
gt_masks = instances.gt_masks |
|
|
if hasattr(gt_masks,'polygons'): |
|
|
gt_masks = convert_coco_poly_to_mask(gt_masks.polygons, h, w) |
|
|
else: |
|
|
gt_masks = gt_masks.tensor.to(dtype=torch.uint8) |
|
|
instances.gt_masks = gt_masks |
|
|
|
|
|
if region_masks: |
|
|
region_masks = [m for m, keep in zip(region_masks, non_empty_instance_mask) if keep] |
|
|
assert len(region_masks) == len(instances), 'The number of region masks must match the number of instances' |
|
|
region_masks = BitMasks( |
|
|
torch.stack([torch.from_numpy(np.ascontiguousarray(x)) for x in region_masks]) |
|
|
) |
|
|
instances.region_masks = region_masks |
|
|
|
|
|
if 'vp_image' in dataset_dict: |
|
|
vp_region_masks = BitMasks( |
|
|
torch.stack([torch.from_numpy(np.ascontiguousarray(x)) for x in vp_region_masks]) |
|
|
) |
|
|
instances.vp_region_masks = vp_region_masks |
|
|
instances.vp_fill_number = torch.tensor(vp_fill_number, dtype=torch.int64) |
|
|
|
|
|
dataset_dict["instances"] = instances |
|
|
return dataset_dict |
|
|
|
|
|
|
|
|
def build_transform_gen_for_eval(cfg): |
|
|
image_size = cfg.INPUT.IMAGE_SIZE |
|
|
min_scale = cfg.INPUT.MIN_SCALE |
|
|
max_scale = cfg.INPUT.MAX_SCALE |
|
|
|
|
|
augmentation = [] |
|
|
|
|
|
|
|
|
augmentation.extend([ |
|
|
T.ResizeShortestEdge( |
|
|
short_edge_length=image_size, max_size=image_size |
|
|
), |
|
|
T.FixedSizeCrop(crop_size=(image_size, image_size), seg_pad_value=0), |
|
|
]) |
|
|
|
|
|
return augmentation |
|
|
|
|
|
|
|
|
class COCOInstanceNewBaselineDatasetMapperForEval(COCOInstanceNewBaselineDatasetMapper): |
|
|
def __init__(self, cfg): |
|
|
super().__init__(cfg) |
|
|
self.tfm_gens = build_transform_gen_for_eval(cfg) |
|
|
self.pixel_mean = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1) |
|
|
self.pixel_std = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1) |
|
|
|