YuqianFu's picture
Upload folder using huggingface_hub
fe6c2e4 verified
from abc import ABC, abstractmethod
import os
import copy
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from einops import rearrange
def pairwise_cos_sim(x1: torch.Tensor, x2: torch.Tensor):
"""
return pair-wise similarity matrix between two tensors
:param x1: [B,...,M,D]
:param x2: [B,...,N,D]
:return: similarity matrix [B,...,M,N]
"""
x1 = F.normalize(x1, dim=-1)
x2 = F.normalize(x2, dim=-1)
sim = torch.matmul(x1, x2.transpose(-2, -1))
return sim
def rand_sample(x, max_len):
if x.shape[0] <= max_len:
return x
else:
rand_idx = torch.randperm(x.shape[0])[:max_len]
return x[rand_idx, :]
# def rand_sample_repeat(x, max_len):
# # debug: 处理空张量情况
# if x.shape[0] == 0:
# # 创建一个全零张量作为替代
# # 假设每个点包含2维坐标 (x,y)
# return torch.zeros(max_len, x.shape[1] if len(x.shape) > 1 else 2, device=x.device, dtype=x.dtype)
# if x.shape[0] < max_len:
# indices = torch.randint(0, x.shape[0], (max_len - x.shape[0],))
# # pdb.set_trace()
# return torch.cat((x, x[indices]), dim=0)
# elif x.shape[0] == max_len:
# return x
# else:
# rand_idx = torch.randperm(x.shape[0])[:max_len]
# return x[rand_idx, :]
# debug: ours
def rand_sample_repeat(x, max_len):
# debug: 处理空张量情况
if x.shape[0] == 0:
# 创建一个全零张量作为替代
# 假设每个点包含2维坐标 (x,y)
return torch.zeros(max_len, x.shape[1] if len(x.shape) > 1 else 2, device=x.device, dtype=x.dtype)
if x.shape[0] < max_len:
if x.shape[0] == 0:
# 如果 x.shape[0] 为 0,直接返回全零张量
return torch.zeros(max_len, x.shape[1] if len(x.shape) > 1 else 2, device=x.device, dtype=x.dtype)
indices = torch.randint(0, x.shape[0], (max_len - x.shape[0],))
return torch.cat((x, x[indices]), dim=0)
elif x.shape[0] == max_len:
return x
else:
rand_idx = torch.randperm(x.shape[0])[:max_len]
return x[rand_idx, :]
def point_sample(input, point_coords, return_dtype, **kwargs):
"""
A wrapper around :function:`torch.nn.functional.grid_sample` to support 3D point_coords tensors.
Unlike :function:`torch.nn.functional.grid_sample` it assumes `point_coords` to lie inside
[0, 1] x [0, 1] square.
Args:
input (Tensor): A tensor of shape (N, C, H, W) that contains features map on a H x W grid.
point_coords (Tensor): A tensor of shape (N, P, 2) or (N, Hgrid, Wgrid, 2) that contains
[0, 1] x [0, 1] normalized point coordinates.
Returns:
output (Tensor): A tensor of shape (N, C, P) or (N, C, Hgrid, Wgrid) that contains
features for points in `point_coords`. The features are obtained via bilinear
interplation from `input` the same way as :function:`torch.nn.functional.grid_sample`.
"""
add_dim = False
if point_coords.dim() == 3:
add_dim = True
point_coords = point_coords.unsqueeze(2)
# output = F.grid_sample(input, 2.0 * point_coords - 1.0, **kwargs)
output = F.grid_sample(input.float(), (2.0 * point_coords - 1.0).float().to(input.device), **kwargs)
output = output.to(return_dtype)
if add_dim:
output = output.squeeze(3)
return output
def farthest_point_sample(xyz, npoint):
"""
Input:
xyz: pointcloud data, [B, N, 2]
npoint: number of samples
Return:
centroids: sampled pointcloud index, [B, npoint]
"""
device = xyz.device
B, N, C = xyz.shape
centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
distance = torch.ones(B, N).to(device) * 1e10
farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
batch_indices = torch.arange(B, dtype=torch.long).to(device)
for i in range(npoint):
centroids[:, i] = farthest
centroid = xyz[batch_indices, farthest, :].view(B, 1, 2)
dist = torch.sum((xyz - centroid) ** 2, -1)
distance = torch.min(distance, dist)
farthest = torch.max(distance, -1)[1]
return centroids
def index_points(points, idx):
"""
Input:
points: input points data, [B, N, C]
idx: sample index data, [B, S]
Return:
new_points:, indexed points data, [B, S, C]
"""
device = points.device
B = points.shape[0]
view_shape = list(idx.shape)
view_shape[1:] = [1] * (len(view_shape) - 1)
repeat_shape = list(idx.shape)
repeat_shape[0] = 1
batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
new_points = points[batch_indices, idx, :]
return new_points
def square_distance(src, dst):
"""
Calculate Euclid distance between each two points.
src^T * dst = xn * xm + yn * ym + zn * zm;
sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
Input:
src: source points, [B, N, C]
dst: target points, [B, M, C]
Output:
dist: per-point square distance, [B, N, M]
"""
B, N, _ = src.shape
_, M, _ = dst.shape
dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
dist += torch.sum(src ** 2, -1).view(B, N, 1)
dist += torch.sum(dst ** 2, -1).view(B, 1, M)
return dist
def knn_point(nsample, xyz, new_xyz):
"""
Input:
nsample: max sample number in local region
xyz: all points, [B, N, C]
new_xyz: query points, [B, S, C]
Return:
group_idx: grouped points index, [B, S, nsample]
"""
sqrdists = square_distance(new_xyz, xyz)
_, group_idx = torch.topk(sqrdists, nsample, dim=-1, largest=False, sorted=False)
return group_idx
class ConvReLULN1D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=1, bias=True):
super(ConvReLULN1D, self).__init__()
self.act = nn.ReLU(inplace=True)
self.net = nn.Sequential(
nn.Conv1d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, bias=bias),
self.act
)
self.norm = nn.LayerNorm(out_channels)
def forward(self, x):
# (B, C, N) -> (B, C_1, N)
x = self.net(x)
x = x.permute(0, 2, 1)
x = self.norm(x)
x = x.permute(0, 2, 1)
return x
def normal_init(module, mean=0, std=1, bias=0):
if hasattr(module, 'weight') and module.weight is not None:
nn.init.normal_(module.weight, mean, std)
if hasattr(module, 'bias') and module.bias is not None:
nn.init.constant_(module.bias, bias)
class GeoRegionSampler(nn.Module):
def __init__(self,
input_dim,
output_dim,
num_init_point,
num_sub_point,
num_neighbor,
pooler_mode='mean'):
super(GeoRegionSampler, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.num_init_point = num_init_point
self.num_sub_point = num_sub_point
self.num_neighbor = num_neighbor
self.diff_projector_list = nn.ModuleList()
self.agg_projector_list = nn.ModuleList()
self.pooler_list = nn.ModuleList()
for ii in range(len(num_sub_point)):
self.diff_projector_list.append(nn.Linear(self.input_dim + 2, self.input_dim + 2))
self.agg_projector_list.append(ConvReLULN1D(in_channels=2 * (self.input_dim + 2),
out_channels=self.input_dim,
))
if pooler_mode == 'mean':
self.pooler_list.append(nn.AvgPool1d(kernel_size=num_neighbor[ii]))
elif pooler_mode == 'max':
self.pooler_list.append(nn.AdaptiveMaxPool1d(output_size=1))
else:
raise NotImplementedError(f'{self.pooler_mode} is not supported.')
self.flatten_projector = nn.Linear(self.input_dim * num_sub_point[-1], self.input_dim)
self.dim_projector = nn.Linear(self.input_dim, self.output_dim)
self.norm_init_weights()
# self.dtype = torch.float32
def norm_init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, 0, 0.01)
def forward(self,
feature_map,
region_masks,
original_dtype,
return_dtype):
assert len(feature_map) == len(region_masks)
all_points = []
all_points_fea = []
all_points_img_ids = []
# Sample points and their features
for img_idx, (region_feature_map_i, region_masks_list_i) in enumerate(zip(feature_map, region_masks)):
if len(region_masks_list_i) != 0:
# (w, h)
ori_image_wh = torch.tensor([region_masks_list_i[0].shape[0], region_masks_list_i[0].shape[1]],
device=region_masks_list_i[0].device)[None,]
# list of elements of shape [num_sample_point, 2]
cur_non_zero_pos = [rand_sample_repeat((m.nonzero() / ori_image_wh), self.num_init_point) for m in
region_masks_list_i]
# list -> [num_mask, num_sample_point, 2]
cur_non_zero_pos = torch.stack(cur_non_zero_pos)
# [HxW, C] -> [H, W, C] -> [C, H, W] -> [N, C, H, W]
h = w = int(math.sqrt(region_feature_map_i.shape[0]))
c = region_feature_map_i.shape[-1]
dup_region_feature_map_i = region_feature_map_i.reshape(h, w, c).permute(2, 0, 1)
dup_region_feature_map_i = dup_region_feature_map_i.unsqueeze(0).repeat(cur_non_zero_pos.shape[0], 1, 1,
1)
# [num_mask, C, H, W] x [num_mask, num_sample_point, 2] -> [num_mask, C, num_sample_point] -> [num_mask, num_sample_point, C]
# F.grid_sample doesn't support BF16. Need to tranform into float32 then transform back.
dup_region_feature_map_i_ori_type = dup_region_feature_map_i.to(original_dtype)
region_feature_i = point_sample(dup_region_feature_map_i_ori_type,
cur_non_zero_pos.flip(dims=(2,)).type(original_dtype),
return_dtype,
align_corners=True,
)
# region_feature_i = region_feature_i.to(dup_region_feature_map_i.dtype)
region_feature_i = region_feature_i.transpose(-2, -1)
cur_img_ids = [img_idx] * len(cur_non_zero_pos)
# save to global list
all_points.append(cur_non_zero_pos)
all_points_fea.append(region_feature_i)
all_points_img_ids.extend(cur_img_ids)
# pdb.set_trace()
# No region found, return list of None.
if len(all_points) == 0:
return [None] * len(region_masks)
all_points = torch.cat(all_points, dim=0).to(return_dtype) # [B*num_mask, num_sample_point, 2]
all_points_fea = torch.cat(all_points_fea, dim=0) # [B*num_mask, num_sample_point, C]
all_points_img_ids = torch.tensor(all_points_img_ids, device=all_points_fea.device)
# pdb.set_trace()
assert all_points_fea.shape[:-1] == all_points_fea.shape[:-1]
# Processing.
for stage_i in range(len(self.num_sub_point)):
cur_num_sub_point = self.num_sub_point[stage_i]
cur_num_neighbor = self.num_neighbor[stage_i]
all_points = all_points.contiguous() # xy [btach, points, xy]
fps_idx = farthest_point_sample(all_points, cur_num_sub_point).long()
new_points = index_points(all_points, fps_idx) # [B, npoint, 2]
new_points_fea = index_points(all_points_fea, fps_idx) # [B, npoint, d]
idx = knn_point(cur_num_neighbor, all_points, new_points)
grouped_points = index_points(all_points, idx) # [B, npoint, k, 2]
grouped_points_fea = index_points(all_points_fea, idx) # [B, npoint, k, d]
# pdb.set_trace()
local_points_fea = torch.cat([grouped_points_fea, grouped_points], dim=-1) # [B, npoint, k, d+2]
anchor_points_fea = torch.cat([new_points_fea, new_points], dim=-1).unsqueeze(-2)
diff_points_fea = local_points_fea - anchor_points_fea
diff_points_fea = self.diff_projector_list[stage_i](diff_points_fea)
gather_points_fea = torch.cat([diff_points_fea, anchor_points_fea.repeat(1, 1, cur_num_neighbor, 1)],
dim=-1) # [B, npoint, k, 2(d+2)]
# pdb.set_trace()
b, n, s, d = gather_points_fea.size()
gather_points_fea = gather_points_fea.permute(0, 1, 3, 2) # [B, npoint, 2(d+2), k]
gather_points_fea = gather_points_fea.reshape(-1, d, s) # [B*npoint, 2(d+2), k]
gather_points_fea = self.agg_projector_list[stage_i](gather_points_fea) # [B*npoint, d, k]
# pdb.set_trace()
batch_size, new_dim, _ = gather_points_fea.size()
gather_points_fea = self.pooler_list[stage_i](gather_points_fea).view(batch_size, new_dim) # [B*npoint, d]
# gather_points_fea = F.adaptive_max_pool1d(gather_points_fea, 1).view(batch_size, -1) # [B*npoint, d]
# pdb.set_trace()
gather_points_fea = gather_points_fea.reshape(b, n, -1) # [B, npoint, d]
# pdb.set_trace()
all_points = new_points
all_points_fea = gather_points_fea
# pdb.set_trace()
x = all_points_fea.flatten(1, -1) # [B, npoint x d]
x = self.flatten_projector(x)
all_region_fea = self.dim_projector(x) # [B, d]
output_region_fea = []
for img_idx in range(len(region_masks)):
cur_mask = all_points_img_ids == img_idx
# pdb.set_trace()
if not cur_mask.any():
output_region_fea.append(None)
else:
output_region_fea.append(all_region_fea[cur_mask])
# pdb.set_trace()
return output_region_fea
class region_pooling(nn.Module):
def __init__(self, num_sample_point):
super().__init__()
self.num_sample_point = num_sample_point
self.pooler = nn.AdaptiveAvgPool1d(output_size=1)
def extract_region_feature(self, region_feature_map, region_masks, original_dtype, return_dtype):
assert len(region_feature_map) == len(region_masks)
print("len(region_feature_map): ", len(region_feature_map)) # debug
print("len(region_masks): ", len(region_masks))
all_points = []
all_points_fea = []
all_points_img_ids = []
for img_id, (region_feature_map_i, region_masks_list_i) in enumerate(zip(region_feature_map, region_masks)):
# [H*W, C]
print("region_feature_map_i shape: ", region_feature_map_i.shape) # debug
print("len(region_masks_list_i): ", len(region_masks_list_i)) # debug
print("region_masks_list_i shape: ", region_masks_list_i.shape) # debug
print("region_masks_list_i[0] shape: ", region_masks_list_i[0].shape) # debug
if len(region_masks_list_i) != 0:
ori_image_wh = torch.tensor([region_masks_list_i[0].shape[0], region_masks_list_i[0].shape[1]], device=region_masks_list_i[0].device)[None,]
print("ori_image_wh: ", ori_image_wh) # debug
# [num_sample_point, 2]
for m in region_masks_list_i:
if m.nonzero().shape[0] <=0:
print('error')
cur_non_zero_pos = [rand_sample_repeat((m.nonzero() / ori_image_wh), self.num_sample_point) for m
in
region_masks_list_i]
# [num_mask, num_sample_point, 2]
cur_non_zero_pos = torch.stack(cur_non_zero_pos)
print("cur_non_zero_pos shape: ", cur_non_zero_pos.shape) # debug
h = w = int(math.sqrt(region_feature_map_i.shape[0]))
c = region_feature_map_i.shape[-1]
dup_region_feature_map_i = region_feature_map_i.reshape(h, w, c).permute(2, 0, 1)
dup_region_feature_map_i = dup_region_feature_map_i.unsqueeze(0).repeat(cur_non_zero_pos.shape[0], 1, 1,
1)
dup_region_feature_map_i_ori_type = dup_region_feature_map_i.to(original_dtype)
region_feature_i = point_sample(dup_region_feature_map_i_ori_type,
cur_non_zero_pos.flip(dims=(2,)).type(original_dtype),
return_dtype,
align_corners=True,
)
# [num_mask, num_sample_point, C]
region_feature_i = region_feature_i.transpose(-2, -1)
cur_img_id = [img_id] * len(cur_non_zero_pos)
all_points.append(cur_non_zero_pos)
all_points_fea.append(region_feature_i)
all_points_img_ids.extend(cur_img_id)
print("len(all_points): ", len(all_points)) # debug
print("len(all_points_fea): ", len(all_points_fea)) # debug
print("len(all_points_img_ids): ", len(all_points_img_ids)) # debug
return all_points, all_points_fea, all_points_img_ids
def forward(self, feature_map, region_masks, original_dtype, return_dtype):
assert len(feature_map) == len(region_masks)
batch_size = len(feature_map)
all_points, all_points_fea, all_points_img_ids = self.extract_region_feature(feature_map, region_masks,
original_dtype, return_dtype)
if len(all_points) == 0:
return [None] * len(region_masks)
all_points = torch.cat(all_points, dim=0).to(return_dtype)
all_points_fea = torch.cat(all_points_fea, dim=0).to(return_dtype)
all_points_img_ids = torch.tensor(all_points_img_ids, device=all_points_fea.device)
region_feat = self.pooler(all_points_fea.transpose(-2, -1)).transpose(-2, -1)
region_feature_list = []
for bs in range(batch_size):
index = all_points_img_ids == bs
region_feature_list.append(region_feat[index])
return region_feature_list