Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a setfit hate speech detection model (86 % accuracy/f1) based on the Ar Hate Speech dataset.
Usage:
pip install setfit
from setfit import SetFitModel
from unicodedata import normalize
# Download model from Hub
model = SetFitModel.from_pretrained("akhooli/setfit_ar_hs")
# Run inference
queries = [
"سكت دهراً و نطق كفراً",
"الخلاف ﻻ يفسد للود قضية.",
"أنت شخص منبوذ. احترم أسيادك.",
"دع المكارم ﻻ ترحل لبغيتها واقعد فإنك أنت الطاعم الكاسي",
]
queries_n = [normalize('NFKC', query) for query in queries]
preds = model.predict(queries_n)
print(preds)
# if you want to see the probabilities for each label
probas = model.predict_proba(queries_n)
print(probas)
The rest of this content is auto-generated.
This is a SetFit model that can be used for Text Classification. This SetFit model uses akhooli/sbert_ar_nli_500k_norm as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| positive |
|
| negative |
|
| Label | Accuracy |
|---|---|
| all | 0.8606 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("akhooli/setfit_ar_hs")
# Run inference
preds = model("شيوعي
علماني
مسيحي
انصار سنه
صوفي
يمثلك التجمع
لا يمثلك التجمع
اهلا بكم جميعا فنحن نريد بناء وطن ❤")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 1 | 18.8448 | 185 |
| Label | Training Sample Count |
|---|---|
| negative | 5200 |
| positive | 4943 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0003 | 1 | 0.3151 | - |
| 0.0333 | 100 | 0.2902 | - |
| 0.0667 | 200 | 0.248 | - |
| 0.1 | 300 | 0.2011 | - |
| 0.1333 | 400 | 0.164 | - |
| 0.1667 | 500 | 0.136 | - |
| 0.2 | 600 | 0.1162 | - |
| 0.2333 | 700 | 0.0915 | - |
| 0.2667 | 800 | 0.0724 | - |
| 0.3 | 900 | 0.0656 | - |
| 0.3333 | 1000 | 0.05 | - |
| 0.3667 | 1100 | 0.0454 | - |
| 0.4 | 1200 | 0.0407 | - |
| 0.4333 | 1300 | 0.0318 | - |
| 0.4667 | 1400 | 0.0338 | - |
| 0.5 | 1500 | 0.0289 | - |
| 0.5333 | 1600 | 0.0266 | - |
| 0.5667 | 1700 | 0.0238 | - |
| 0.6 | 1800 | 0.02 | - |
| 0.6333 | 1900 | 0.0167 | - |
| 0.6667 | 2000 | 0.0168 | - |
| 0.7 | 2100 | 0.0161 | - |
| 0.7333 | 2200 | 0.0143 | - |
| 0.7667 | 2300 | 0.0128 | - |
| 0.8 | 2400 | 0.0128 | - |
| 0.8333 | 2500 | 0.0146 | - |
| 0.8667 | 2600 | 0.0113 | - |
| 0.9 | 2700 | 0.0146 | - |
| 0.9333 | 2800 | 0.0109 | - |
| 0.9667 | 2900 | 0.0128 | - |
| 1.0 | 3000 | 0.0101 | - |
| 1.0333 | 3100 | 0.0126 | - |
| 1.0667 | 3200 | 0.0092 | - |
| 1.1 | 3300 | 0.0108 | - |
| 1.1333 | 3400 | 0.0095 | - |
| 1.1667 | 3500 | 0.0121 | - |
| 1.2 | 3600 | 0.0088 | - |
| 1.2333 | 3700 | 0.0086 | - |
| 1.2667 | 3800 | 0.0075 | - |
| 1.3 | 3900 | 0.009 | - |
| 1.3333 | 4000 | 0.008 | - |
| 1.3667 | 4100 | 0.0051 | - |
| 1.4 | 4200 | 0.007 | - |
| 1.4333 | 4300 | 0.0055 | - |
| 1.4667 | 4400 | 0.0074 | - |
| 1.5 | 4500 | 0.0065 | - |
| 1.5333 | 4600 | 0.0086 | - |
| 1.5667 | 4700 | 0.0064 | - |
| 1.6 | 4800 | 0.0064 | - |
| 1.6333 | 4900 | 0.0073 | - |
| 1.6667 | 5000 | 0.0052 | - |
| 1.7 | 5100 | 0.0056 | - |
| 1.7333 | 5200 | 0.0059 | - |
| 1.7667 | 5300 | 0.0048 | - |
| 1.8 | 5400 | 0.0044 | - |
| 1.8333 | 5500 | 0.003 | - |
| 1.8667 | 5600 | 0.0045 | - |
| 1.9 | 5700 | 0.0043 | - |
| 1.9333 | 5800 | 0.0042 | - |
| 1.9667 | 5900 | 0.0029 | - |
| 2.0 | 6000 | 0.0033 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
Base model
aubmindlab/bert-base-arabertv02