Yair - Fixed CatBoost. Works with cat_features
Browse files- model_predictor.py +17 -1
model_predictor.py
CHANGED
|
@@ -1,9 +1,24 @@
|
|
| 1 |
import numpy as np
|
| 2 |
import pandas as pd
|
|
|
|
|
|
|
| 3 |
|
| 4 |
def predict(models, X_test):
|
| 5 |
""" Make predictions using trained models """
|
| 6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
test_predictions_df = pd.DataFrame(test_predictions)
|
| 9 |
|
|
@@ -15,3 +30,4 @@ def predict(models, X_test):
|
|
| 15 |
test_predictions_df["is_click_predicted"] = test_predictions_df.max(axis=1)
|
| 16 |
|
| 17 |
return test_predictions_df
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
import pandas as pd
|
| 3 |
+
from catboost import Pool
|
| 4 |
+
from data_loader import CATEGORICAL_COLUMNS, IDS_COLUMNS, TARGET_COLUMN, FEATURE_COLUMNS, AGGREGATED_COLUMNS, TEMPORAL_COLUMNS
|
| 5 |
|
| 6 |
def predict(models, X_test):
|
| 7 |
""" Make predictions using trained models """
|
| 8 |
+
# Ensure categorical features are properly handled
|
| 9 |
+
cat_features = CATEGORICAL_COLUMNS
|
| 10 |
+
test_predictions = {}
|
| 11 |
+
#
|
| 12 |
+
# test_predictions = {name: np.array(model.predict(X_test)).squeeze() for name, model in models.items()}
|
| 13 |
+
for name, model in models.items():
|
| 14 |
+
if "CatBoost" in name: # Handle CatBoost models
|
| 15 |
+
pool = Pool(data=X_test, cat_features=cat_features)
|
| 16 |
+
test_predictions[name] = model.predict(pool)
|
| 17 |
+
else: # Other models
|
| 18 |
+
# reordering columns to match the order of columns in the model
|
| 19 |
+
new_X_test = X_test[IDS_COLUMNS + FEATURE_COLUMNS + AGGREGATED_COLUMNS + TEMPORAL_COLUMNS]
|
| 20 |
+
test_predictions[name] = np.array(model.predict(new_X_test)).squeeze()
|
| 21 |
+
|
| 22 |
|
| 23 |
test_predictions_df = pd.DataFrame(test_predictions)
|
| 24 |
|
|
|
|
| 30 |
test_predictions_df["is_click_predicted"] = test_predictions_df.max(axis=1)
|
| 31 |
|
| 32 |
return test_predictions_df
|
| 33 |
+
|