clarkkitchen22's picture
Initial GeoBot Forecasting Framework commit
484e3bc
"""
Bayesian Forecasting Module for GeoBotv1
Provides Bayesian belief updating, prior construction, and probabilistic forecasting
for geopolitical scenarios. Integrates with GeoBot 2.0 analytical framework.
"""
from dataclasses import dataclass, field
from typing import Dict, List, Any, Optional, Callable, Tuple
from enum import Enum
import numpy as np
from scipy import stats
from scipy.optimize import minimize
class PriorType(Enum):
"""Types of prior distributions."""
UNIFORM = "uniform"
NORMAL = "normal"
BETA = "beta"
GAMMA = "gamma"
EXPERT_INFORMED = "expert_informed"
HISTORICAL = "historical"
class EvidenceType(Enum):
"""Types of evidence for belief updating."""
INTELLIGENCE_REPORT = "intelligence_report"
SATELLITE_IMAGERY = "satellite_imagery"
ECONOMIC_DATA = "economic_data"
MILITARY_MOVEMENT = "military_movement"
DIPLOMATIC_SIGNAL = "diplomatic_signal"
OPEN_SOURCE = "open_source"
@dataclass
class GeopoliticalPrior:
"""
Prior distribution for geopolitical parameter.
Attributes
----------
parameter_name : str
Name of the parameter
prior_type : PriorType
Type of prior distribution
parameters : Dict[str, float]
Distribution parameters
description : str
Description of what this parameter represents
"""
parameter_name: str
prior_type: PriorType
parameters: Dict[str, float]
description: str = ""
def sample(self, n_samples: int = 1000, random_state: Optional[int] = None) -> np.ndarray:
"""
Sample from prior distribution.
Parameters
----------
n_samples : int
Number of samples
random_state : Optional[int]
Random seed
Returns
-------
np.ndarray
Samples from prior
"""
if random_state is not None:
np.random.seed(random_state)
if self.prior_type == PriorType.UNIFORM:
low = self.parameters['low']
high = self.parameters['high']
return np.random.uniform(low, high, n_samples)
elif self.prior_type == PriorType.NORMAL:
mean = self.parameters['mean']
std = self.parameters['std']
return np.random.normal(mean, std, n_samples)
elif self.prior_type == PriorType.BETA:
alpha = self.parameters['alpha']
beta = self.parameters['beta']
return np.random.beta(alpha, beta, n_samples)
elif self.prior_type == PriorType.GAMMA:
shape = self.parameters['shape']
scale = self.parameters['scale']
return np.random.gamma(shape, scale, n_samples)
else:
raise ValueError(f"Sampling not implemented for {self.prior_type}")
def pdf(self, x: np.ndarray) -> np.ndarray:
"""
Compute probability density function.
Parameters
----------
x : np.ndarray
Points at which to evaluate PDF
Returns
-------
np.ndarray
PDF values
"""
if self.prior_type == PriorType.UNIFORM:
low = self.parameters['low']
high = self.parameters['high']
return stats.uniform.pdf(x, loc=low, scale=high-low)
elif self.prior_type == PriorType.NORMAL:
mean = self.parameters['mean']
std = self.parameters['std']
return stats.norm.pdf(x, loc=mean, scale=std)
elif self.prior_type == PriorType.BETA:
alpha = self.parameters['alpha']
beta = self.parameters['beta']
return stats.beta.pdf(x, alpha, beta)
elif self.prior_type == PriorType.GAMMA:
shape = self.parameters['shape']
scale = self.parameters['scale']
return stats.gamma.pdf(x, shape, scale=scale)
else:
raise ValueError(f"PDF not implemented for {self.prior_type}")
@dataclass
class EvidenceUpdate:
"""
Evidence for Bayesian belief updating.
Attributes
----------
evidence_type : EvidenceType
Type of evidence
observation : Any
Observed value or data
likelihood_function : Callable
Function mapping parameters to likelihood of observation
reliability : float
Reliability score [0, 1]
source : str
Source of evidence
timestamp : Optional[str]
When evidence was collected
"""
evidence_type: EvidenceType
observation: Any
likelihood_function: Callable[[np.ndarray], np.ndarray]
reliability: float = 1.0
source: str = ""
timestamp: Optional[str] = None
def compute_likelihood(self, parameter_values: np.ndarray) -> np.ndarray:
"""
Compute likelihood of observation given parameter values.
Parameters
----------
parameter_values : np.ndarray
Parameter values
Returns
-------
np.ndarray
Likelihood values
"""
base_likelihood = self.likelihood_function(parameter_values)
# Adjust for reliability
return base_likelihood ** self.reliability
@dataclass
class BeliefState:
"""
Current belief state (posterior distribution).
Attributes
----------
parameter_name : str
Name of parameter
posterior_samples : np.ndarray
Samples from posterior distribution
prior : GeopoliticalPrior
Original prior
evidence_history : List[EvidenceUpdate]
Evidence used to update beliefs
"""
parameter_name: str
posterior_samples: np.ndarray
prior: GeopoliticalPrior
evidence_history: List[EvidenceUpdate] = field(default_factory=list)
def mean(self) -> float:
"""Posterior mean."""
return float(np.mean(self.posterior_samples))
def median(self) -> float:
"""Posterior median."""
return float(np.median(self.posterior_samples))
def std(self) -> float:
"""Posterior standard deviation."""
return float(np.std(self.posterior_samples))
def quantile(self, q: float) -> float:
"""
Posterior quantile.
Parameters
----------
q : float
Quantile in [0, 1]
Returns
-------
float
Quantile value
"""
return float(np.quantile(self.posterior_samples, q))
def credible_interval(self, alpha: float = 0.05) -> Tuple[float, float]:
"""
Compute credible interval.
Parameters
----------
alpha : float
Significance level (default 0.05 for 95% CI)
Returns
-------
Tuple[float, float]
Lower and upper bounds
"""
lower = self.quantile(alpha / 2)
upper = self.quantile(1 - alpha / 2)
return (lower, upper)
def probability_greater_than(self, threshold: float) -> float:
"""
Compute P(parameter > threshold | evidence).
Parameters
----------
threshold : float
Threshold value
Returns
-------
float
Probability
"""
return float(np.mean(self.posterior_samples > threshold))
def probability_in_range(self, low: float, high: float) -> float:
"""
Compute P(low < parameter < high | evidence).
Parameters
----------
low : float
Lower bound
high : float
Upper bound
Returns
-------
float
Probability
"""
return float(np.mean((self.posterior_samples > low) &
(self.posterior_samples < high)))
@dataclass
class CredibleInterval:
"""Credible interval for forecast."""
lower: float
upper: float
alpha: float # Significance level
@property
def width(self) -> float:
"""Interval width."""
return self.upper - self.lower
@property
def credibility(self) -> float:
"""Credibility level (e.g., 0.95 for 95% CI)."""
return 1 - self.alpha
@dataclass
class ForecastDistribution:
"""
Predictive distribution for geopolitical forecast.
Attributes
----------
variable_name : str
Name of forecasted variable
samples : np.ndarray
Samples from predictive distribution
time_horizon : int
Forecast horizon (days, months, etc.)
conditioning_info : Dict[str, Any]
Information conditioned on
"""
variable_name: str
samples: np.ndarray
time_horizon: int
conditioning_info: Dict[str, Any] = field(default_factory=dict)
def point_forecast(self, method: str = 'mean') -> float:
"""
Point forecast.
Parameters
----------
method : str
'mean', 'median', or 'mode'
Returns
-------
float
Point forecast
"""
if method == 'mean':
return float(np.mean(self.samples))
elif method == 'median':
return float(np.median(self.samples))
elif method == 'mode':
# Use kernel density estimation for mode
from scipy.stats import gaussian_kde
kde = gaussian_kde(self.samples)
x = np.linspace(self.samples.min(), self.samples.max(), 1000)
return float(x[np.argmax(kde(x))])
else:
raise ValueError(f"Unknown method: {method}")
def credible_interval(self, alpha: float = 0.05) -> CredibleInterval:
"""
Compute credible interval.
Parameters
----------
alpha : float
Significance level
Returns
-------
CredibleInterval
Credible interval
"""
lower = float(np.quantile(self.samples, alpha / 2))
upper = float(np.quantile(self.samples, 1 - alpha / 2))
return CredibleInterval(lower=lower, upper=upper, alpha=alpha)
def probability_of_event(self, condition: Callable[[np.ndarray], np.ndarray]) -> float:
"""
Probability of event defined by condition.
Parameters
----------
condition : Callable
Function that returns True/False for each sample
Returns
-------
float
Probability
"""
return float(np.mean(condition(self.samples)))
class BayesianForecaster:
"""
Bayesian forecasting engine for geopolitical analysis.
Integrates with GeoBot 2.0 analytical framework to provide
probabilistic forecasts with explicit uncertainty quantification.
"""
def __init__(self):
"""Initialize Bayesian forecaster."""
self.priors: Dict[str, GeopoliticalPrior] = {}
self.beliefs: Dict[str, BeliefState] = {}
def set_prior(self, prior: GeopoliticalPrior) -> None:
"""
Set prior distribution for parameter.
Parameters
----------
prior : GeopoliticalPrior
Prior distribution
"""
self.priors[prior.parameter_name] = prior
def update_belief(
self,
parameter_name: str,
evidence: EvidenceUpdate,
n_samples: int = 10000,
method: str = 'importance_sampling'
) -> BeliefState:
"""
Update beliefs using Bayes' rule.
Parameters
----------
parameter_name : str
Parameter to update
evidence : EvidenceUpdate
New evidence
n_samples : int
Number of samples for approximation
method : str
'importance_sampling' or 'rejection_sampling'
Returns
-------
BeliefState
Updated belief state
"""
if parameter_name not in self.priors:
raise ValueError(f"No prior set for {parameter_name}")
# Get current prior or posterior
if parameter_name in self.beliefs:
# Use previous posterior as new prior
prior_samples = self.beliefs[parameter_name].posterior_samples
else:
# Use original prior
prior_samples = self.priors[parameter_name].sample(n_samples)
# Compute likelihoods
likelihoods = evidence.compute_likelihood(prior_samples)
if method == 'importance_sampling':
# Importance sampling with resampling
weights = likelihoods / np.sum(likelihoods)
# Resample according to weights
indices = np.random.choice(
len(prior_samples),
size=n_samples,
replace=True,
p=weights
)
posterior_samples = prior_samples[indices]
elif method == 'rejection_sampling':
# Rejection sampling
max_likelihood = np.max(likelihoods)
accepted = []
for sample, likelihood in zip(prior_samples, likelihoods):
if np.random.uniform(0, max_likelihood) < likelihood:
accepted.append(sample)
if len(accepted) < 100:
raise ValueError("Rejection sampling failed - too few accepted samples")
posterior_samples = np.array(accepted)
else:
raise ValueError(f"Unknown method: {method}")
# Create or update belief state
if parameter_name in self.beliefs:
belief = self.beliefs[parameter_name]
belief.posterior_samples = posterior_samples
belief.evidence_history.append(evidence)
else:
belief = BeliefState(
parameter_name=parameter_name,
posterior_samples=posterior_samples,
prior=self.priors[parameter_name],
evidence_history=[evidence]
)
self.beliefs[parameter_name] = belief
return belief
def sequential_update(
self,
parameter_name: str,
evidence_sequence: List[EvidenceUpdate],
n_samples: int = 10000
) -> BeliefState:
"""
Sequential belief updating with multiple pieces of evidence.
Parameters
----------
parameter_name : str
Parameter to update
evidence_sequence : List[EvidenceUpdate]
Sequence of evidence
n_samples : int
Number of samples
Returns
-------
BeliefState
Final belief state
"""
for evidence in evidence_sequence:
self.update_belief(parameter_name, evidence, n_samples)
return self.beliefs[parameter_name]
def forecast(
self,
variable_name: str,
predictive_function: Callable[[Dict[str, float]], float],
time_horizon: int,
n_samples: int = 10000,
conditioning_info: Optional[Dict[str, Any]] = None
) -> ForecastDistribution:
"""
Generate probabilistic forecast.
Parameters
----------
variable_name : str
Variable to forecast
predictive_function : Callable
Function mapping parameter values to prediction
time_horizon : int
Forecast horizon
n_samples : int
Number of forecast samples
conditioning_info : Optional[Dict[str, Any]]
Additional conditioning information
Returns
-------
ForecastDistribution
Forecast distribution
"""
# Sample parameters from beliefs
parameter_samples = {}
for param_name, belief in self.beliefs.items():
indices = np.random.choice(len(belief.posterior_samples), size=n_samples)
parameter_samples[param_name] = belief.posterior_samples[indices]
# Generate forecasts
forecast_samples = np.zeros(n_samples)
for i in range(n_samples):
params = {name: samples[i] for name, samples in parameter_samples.items()}
forecast_samples[i] = predictive_function(params)
return ForecastDistribution(
variable_name=variable_name,
samples=forecast_samples,
time_horizon=time_horizon,
conditioning_info=conditioning_info or {}
)
def model_comparison(
self,
models: Dict[str, Callable],
evidence: List[EvidenceUpdate],
prior_model_probs: Optional[Dict[str, float]] = None
) -> Dict[str, float]:
"""
Bayesian model comparison using evidence.
Parameters
----------
models : Dict[str, Callable]
Dictionary of models (name -> likelihood function)
evidence : List[EvidenceUpdate]
Evidence for comparison
prior_model_probs : Optional[Dict[str, float]]
Prior model probabilities
Returns
-------
Dict[str, float]
Posterior model probabilities
"""
if prior_model_probs is None:
# Uniform prior over models
prior_model_probs = {name: 1.0 / len(models) for name in models}
# Compute marginal likelihoods (evidence)
marginal_likelihoods = {}
for model_name, model_fn in models.items():
# This is a simplified version - full implementation would
# integrate over parameter space
likelihood = 1.0
for ev in evidence:
# Assuming model_fn can compute likelihood
likelihood *= np.mean(ev.compute_likelihood(model_fn))
marginal_likelihoods[model_name] = likelihood
# Compute posterior model probabilities
posterior_probs = {}
total = 0.0
for model_name in models:
unnormalized = (prior_model_probs[model_name] *
marginal_likelihoods[model_name])
posterior_probs[model_name] = unnormalized
total += unnormalized
# Normalize
for model_name in posterior_probs:
posterior_probs[model_name] /= total
return posterior_probs
def get_belief_summary(self, parameter_name: str) -> Dict[str, Any]:
"""
Get summary statistics for belief state.
Parameters
----------
parameter_name : str
Parameter name
Returns
-------
Dict[str, Any]
Summary statistics
"""
if parameter_name not in self.beliefs:
raise ValueError(f"No beliefs for {parameter_name}")
belief = self.beliefs[parameter_name]
ci_95 = belief.credible_interval(alpha=0.05)
ci_90 = belief.credible_interval(alpha=0.10)
return {
'parameter': parameter_name,
'mean': belief.mean(),
'median': belief.median(),
'std': belief.std(),
'95%_CI': ci_95,
'90%_CI': ci_90,
'n_evidence_updates': len(belief.evidence_history),
'evidence_types': [ev.evidence_type.value for ev in belief.evidence_history]
}