clarkkitchen22's picture
Initial GeoBot Forecasting Framework commit
484e3bc
"""
Scenario representation and management for geopolitical modeling.
"""
import numpy as np
from typing import Dict, List, Optional, Any
from dataclasses import dataclass, field
from datetime import datetime
@dataclass
class Scenario:
"""
Represents a geopolitical scenario with multiple features and metadata.
Attributes
----------
name : str
Name or identifier for the scenario
features : Dict[str, np.ndarray]
Dictionary of feature names to values
timestamp : datetime
Timestamp of the scenario
metadata : Dict[str, Any]
Additional metadata
probability : float
Probability or weight of this scenario (for ensembles)
"""
name: str
features: Dict[str, np.ndarray]
timestamp: datetime = field(default_factory=datetime.now)
metadata: Dict[str, Any] = field(default_factory=dict)
probability: float = 1.0
def get_feature_vector(self, feature_names: Optional[List[str]] = None) -> np.ndarray:
"""
Get features as a vector.
Parameters
----------
feature_names : List[str], optional
List of feature names to include (if None, use all)
Returns
-------
np.ndarray
Feature vector
"""
if feature_names is None:
feature_names = list(self.features.keys())
vectors = [self.features[name].flatten() for name in feature_names if name in self.features]
return np.concatenate(vectors)
def get_feature_matrix(self) -> np.ndarray:
"""
Get all features as a matrix.
Returns
-------
np.ndarray
Feature matrix (n_features, ...)
"""
return np.array([v for v in self.features.values()])
def add_feature(self, name: str, values: np.ndarray) -> None:
"""
Add a new feature to the scenario.
Parameters
----------
name : str
Feature name
values : np.ndarray
Feature values
"""
self.features[name] = values
def remove_feature(self, name: str) -> None:
"""
Remove a feature from the scenario.
Parameters
----------
name : str
Feature name to remove
"""
if name in self.features:
del self.features[name]
def clone(self) -> 'Scenario':
"""
Create a deep copy of the scenario.
Returns
-------
Scenario
Cloned scenario
"""
return Scenario(
name=self.name,
features={k: v.copy() for k, v in self.features.items()},
timestamp=self.timestamp,
metadata=self.metadata.copy(),
probability=self.probability
)
class ScenarioDistribution:
"""
Represents a distribution over multiple scenarios.
This is useful for Monte Carlo simulations, ensemble forecasting,
and probabilistic reasoning.
"""
def __init__(self, scenarios: Optional[List[Scenario]] = None):
"""
Initialize scenario distribution.
Parameters
----------
scenarios : List[Scenario], optional
Initial list of scenarios
"""
self.scenarios: List[Scenario] = scenarios if scenarios is not None else []
def add_scenario(self, scenario: Scenario) -> None:
"""
Add a scenario to the distribution.
Parameters
----------
scenario : Scenario
Scenario to add
"""
self.scenarios.append(scenario)
def get_probabilities(self) -> np.ndarray:
"""
Get probabilities of all scenarios.
Returns
-------
np.ndarray
Array of probabilities
"""
probs = np.array([s.probability for s in self.scenarios])
# Normalize
return probs / probs.sum()
def normalize_probabilities(self) -> None:
"""
Normalize scenario probabilities to sum to 1.
"""
total_prob = sum(s.probability for s in self.scenarios)
for scenario in self.scenarios:
scenario.probability /= total_prob
def get_feature_samples(self, feature_names: Optional[List[str]] = None) -> np.ndarray:
"""
Get feature samples from all scenarios.
Parameters
----------
feature_names : List[str], optional
List of feature names to include
Returns
-------
np.ndarray
Feature samples (n_scenarios, n_features)
"""
samples = [s.get_feature_vector(feature_names) for s in self.scenarios]
return np.array(samples)
def get_weighted_mean(self, feature_names: Optional[List[str]] = None) -> np.ndarray:
"""
Compute weighted mean of features.
Parameters
----------
feature_names : List[str], optional
List of feature names to include
Returns
-------
np.ndarray
Weighted mean feature vector
"""
samples = self.get_feature_samples(feature_names)
probs = self.get_probabilities()
return np.average(samples, axis=0, weights=probs)
def get_variance(self, feature_names: Optional[List[str]] = None) -> np.ndarray:
"""
Compute variance of features.
Parameters
----------
feature_names : List[str], optional
List of feature names to include
Returns
-------
np.ndarray
Variance of features
"""
samples = self.get_feature_samples(feature_names)
probs = self.get_probabilities()
mean = self.get_weighted_mean(feature_names)
variance = np.average((samples - mean) ** 2, axis=0, weights=probs)
return variance
def sample(self, n_samples: int = 1, replace: bool = True) -> List[Scenario]:
"""
Sample scenarios from the distribution.
Parameters
----------
n_samples : int
Number of samples to draw
replace : bool
Whether to sample with replacement
Returns
-------
List[Scenario]
Sampled scenarios
"""
probs = self.get_probabilities()
indices = np.random.choice(
len(self.scenarios),
size=n_samples,
replace=replace,
p=probs
)
return [self.scenarios[i] for i in indices]
def filter_by_probability(self, threshold: float) -> 'ScenarioDistribution':
"""
Filter scenarios by probability threshold.
Parameters
----------
threshold : float
Minimum probability threshold
Returns
-------
ScenarioDistribution
New distribution with filtered scenarios
"""
filtered_scenarios = [s for s in self.scenarios if s.probability >= threshold]
return ScenarioDistribution(filtered_scenarios)
def get_top_k(self, k: int) -> 'ScenarioDistribution':
"""
Get top k scenarios by probability.
Parameters
----------
k : int
Number of scenarios to return
Returns
-------
ScenarioDistribution
Distribution with top k scenarios
"""
sorted_scenarios = sorted(self.scenarios, key=lambda s: s.probability, reverse=True)
return ScenarioDistribution(sorted_scenarios[:k])
def __len__(self) -> int:
"""Return number of scenarios."""
return len(self.scenarios)
def __getitem__(self, idx: int) -> Scenario:
"""Get scenario by index."""
return self.scenarios[idx]
def __iter__(self):
"""Iterate over scenarios."""
return iter(self.scenarios)