clarkkitchen22's picture
Initial GeoBot Forecasting Framework commit
484e3bc
"""
Causal Discovery Module
Discover causal relationships from observational data using various algorithms.
"""
import numpy as np
import pandas as pd
from typing import Optional, Dict, List, Tuple
from .causal_graph import CausalGraph
class CausalDiscovery:
"""
Discover causal structures from data.
Implements various causal discovery algorithms to learn
causal graphs from observational data.
"""
def __init__(self, method: str = 'pc'):
"""
Initialize causal discovery.
Parameters
----------
method : str
Discovery method ('pc', 'ges', 'lingam')
"""
self.method = method
def discover_from_data(
self,
data: pd.DataFrame,
alpha: float = 0.05,
max_cond_vars: int = 3
) -> CausalGraph:
"""
Discover causal graph from data.
Parameters
----------
data : pd.DataFrame
Observational data
alpha : float
Significance level for independence tests
max_cond_vars : int
Maximum number of conditioning variables
Returns
-------
CausalGraph
Discovered causal graph
"""
if self.method == 'pc':
return self._pc_algorithm(data, alpha, max_cond_vars)
elif self.method == 'ges':
return self._ges_algorithm(data)
elif self.method == 'lingam':
return self._lingam_algorithm(data)
else:
raise ValueError(f"Unknown method: {self.method}")
def _pc_algorithm(
self,
data: pd.DataFrame,
alpha: float,
max_cond_vars: int
) -> CausalGraph:
"""
PC (Peter-Clark) algorithm for causal discovery.
This is a constraint-based algorithm that uses conditional
independence tests to discover causal structure.
Parameters
----------
data : pd.DataFrame
Observational data
alpha : float
Significance level
max_cond_vars : int
Maximum conditioning set size
Returns
-------
CausalGraph
Discovered graph
"""
try:
from pgmpy.estimators import PC
from pgmpy.independence_tests import ChiSquareTest
# PC algorithm
pc = PC(data=data)
model = pc.estimate(
significance_level=alpha,
max_cond_vars=max_cond_vars
)
# Convert to CausalGraph
graph = CausalGraph(name="pc_discovered")
# Add nodes
for node in model.nodes():
graph.add_node(node)
# Add edges
for edge in model.edges():
graph.add_edge(edge[0], edge[1])
return graph
except ImportError:
print("pgmpy required for PC algorithm")
return self._simple_correlation_graph(data)
def _ges_algorithm(self, data: pd.DataFrame) -> CausalGraph:
"""
GES (Greedy Equivalence Search) algorithm.
Score-based causal discovery algorithm.
Parameters
----------
data : pd.DataFrame
Observational data
Returns
-------
CausalGraph
Discovered graph
"""
# Placeholder - requires causal-learn or similar
print("GES algorithm not fully implemented yet")
return self._simple_correlation_graph(data)
def _lingam_algorithm(self, data: pd.DataFrame) -> CausalGraph:
"""
LiNGAM (Linear Non-Gaussian Acyclic Model) algorithm.
Assumes linear relationships and non-Gaussian noise.
Parameters
----------
data : pd.DataFrame
Observational data
Returns
-------
CausalGraph
Discovered graph
"""
# Placeholder - requires lingam package
print("LiNGAM algorithm not fully implemented yet")
return self._simple_correlation_graph(data)
def _simple_correlation_graph(
self,
data: pd.DataFrame,
threshold: float = 0.3
) -> CausalGraph:
"""
Create a simple graph based on correlations.
This is a fallback method and does NOT imply causation.
Parameters
----------
data : pd.DataFrame
Data
threshold : float
Correlation threshold
Returns
-------
CausalGraph
Correlation-based graph
"""
graph = CausalGraph(name="correlation_based")
# Add nodes
for col in data.columns:
graph.add_node(col)
# Add edges based on correlation
corr_matrix = data.corr()
for i, col1 in enumerate(data.columns):
for j, col2 in enumerate(data.columns):
if i < j: # Avoid duplicates
corr = abs(corr_matrix.loc[col1, col2])
if corr > threshold:
# Arbitrary direction - this is NOT causal
try:
graph.add_edge(
col1, col2,
strength=corr,
confidence=0.5,
mechanism="correlation (not causal)"
)
except ValueError:
# Would create cycle, try other direction
try:
graph.add_edge(
col2, col1,
strength=corr,
confidence=0.5,
mechanism="correlation (not causal)"
)
except ValueError:
# Both directions create cycles, skip
pass
return graph
def test_conditional_independence(
self,
data: pd.DataFrame,
X: str,
Y: str,
Z: Optional[List[str]] = None,
method: str = 'fisherz'
) -> Tuple[float, float]:
"""
Test conditional independence X ⊥ Y | Z.
Parameters
----------
data : pd.DataFrame
Data
X : str
First variable
Y : str
Second variable
Z : List[str], optional
Conditioning variables
method : str
Test method ('fisherz', 'chi_square')
Returns
-------
tuple
(test_statistic, p_value)
"""
if Z is None:
Z = []
if method == 'fisherz':
return self._fisherz_test(data, X, Y, Z)
elif method == 'chi_square':
return self._chi_square_test(data, X, Y, Z)
else:
raise ValueError(f"Unknown test method: {method}")
def _fisherz_test(
self,
data: pd.DataFrame,
X: str,
Y: str,
Z: List[str]
) -> Tuple[float, float]:
"""
Fisher's Z test for conditional independence.
Parameters
----------
data : pd.DataFrame
Data
X : str
First variable
Y : str
Second variable
Z : List[str]
Conditioning variables
Returns
-------
tuple
(test_statistic, p_value)
"""
from scipy.stats import norm
n = len(data)
if len(Z) == 0:
# Unconditional correlation
corr = data[[X, Y]].corr().loc[X, Y]
else:
# Partial correlation
all_vars = [X, Y] + Z
corr_matrix = data[all_vars].corr()
# Compute partial correlation
# This is a simplified version
corr_XY = corr_matrix.loc[X, Y]
corr = corr_XY # Placeholder
# Fisher's Z transformation
if abs(corr) >= 0.9999:
corr = 0.9999 * np.sign(corr)
z = 0.5 * np.log((1 + corr) / (1 - corr))
test_stat = np.sqrt(n - len(Z) - 3) * z
# Two-tailed p-value
p_value = 2 * (1 - norm.cdf(abs(test_stat)))
return test_stat, p_value
def _chi_square_test(
self,
data: pd.DataFrame,
X: str,
Y: str,
Z: List[str]
) -> Tuple[float, float]:
"""
Chi-square test for conditional independence.
Parameters
----------
data : pd.DataFrame
Data
X : str
First variable
Y : str
Second variable
Z : List[str]
Conditioning variables
Returns
-------
tuple
(test_statistic, p_value)
"""
from scipy.stats import chi2_contingency
if len(Z) == 0:
# Unconditional test
contingency_table = pd.crosstab(data[X], data[Y])
chi2, p_value, dof, expected = chi2_contingency(contingency_table)
return chi2, p_value
else:
# Conditional test - stratify by Z
# This is simplified
chi2_sum = 0
dof_sum = 0
for z_value in data[Z[0]].unique():
subset = data[data[Z[0]] == z_value]
if len(subset) > 1:
contingency_table = pd.crosstab(subset[X], subset[Y])
if contingency_table.shape[0] > 1 and contingency_table.shape[1] > 1:
chi2, _, dof, _ = chi2_contingency(contingency_table)
chi2_sum += chi2
dof_sum += dof
# Approximate p-value
from scipy.stats import chi2
p_value = 1 - chi2.cdf(chi2_sum, dof_sum) if dof_sum > 0 else 1.0
return chi2_sum, p_value