clarkkitchen22's picture
Initial GeoBot Forecasting Framework commit
484e3bc
"""
Causal Graph Module - DAG Representation
Provides infrastructure for representing and analyzing causal relationships
in geopolitical systems using Directed Acyclic Graphs (DAGs).
This module answers:
- What causes conflict?
- What causes collapse?
- What causes escalation?
- What causes mobilization?
- What causes instability?
Critical for: Real forecasting of interventions, not just correlation-based guessing.
"""
import numpy as np
import networkx as nx
from typing import Dict, List, Set, Optional, Tuple, Any, Callable
from dataclasses import dataclass, field
import json
@dataclass
class CausalEdge:
"""
Represents a causal edge in the graph.
Attributes
----------
source : str
Source node (cause)
target : str
Target node (effect)
strength : float
Strength of causal relationship (-1 to 1)
confidence : float
Confidence in this relationship (0 to 1)
mechanism : str
Description of causal mechanism
"""
source: str
target: str
strength: float = 1.0
confidence: float = 1.0
mechanism: str = ""
class CausalGraph:
"""
Directed Acyclic Graph (DAG) for causal relationships.
This class provides the foundation for causal inference in geopolitical
forecasting, ensuring that we understand what actually causes events
rather than just observing correlations.
"""
def __init__(self, name: str = "geopolitical_dag"):
"""
Initialize causal graph.
Parameters
----------
name : str
Name of the causal graph
"""
self.name = name
self.graph = nx.DiGraph()
self.edges: List[CausalEdge] = []
self.node_metadata: Dict[str, Dict[str, Any]] = {}
def add_node(
self,
node: str,
node_type: str = "variable",
metadata: Optional[Dict[str, Any]] = None
) -> None:
"""
Add a node to the causal graph.
Parameters
----------
node : str
Node identifier
node_type : str
Type of node ('variable', 'event', 'policy', 'state')
metadata : dict, optional
Additional metadata for the node
"""
self.graph.add_node(node)
self.node_metadata[node] = {
'type': node_type,
'metadata': metadata or {}
}
def add_edge(
self,
source: str,
target: str,
strength: float = 1.0,
confidence: float = 1.0,
mechanism: str = ""
) -> None:
"""
Add a causal edge to the graph.
Parameters
----------
source : str
Source node (cause)
target : str
Target node (effect)
strength : float
Strength of causal relationship
confidence : float
Confidence in this relationship
mechanism : str
Description of causal mechanism
"""
# Check for cycles
if not self._would_create_cycle(source, target):
self.graph.add_edge(source, target)
edge = CausalEdge(source, target, strength, confidence, mechanism)
self.edges.append(edge)
else:
raise ValueError(f"Adding edge {source} -> {target} would create a cycle")
def remove_edge(self, source: str, target: str) -> None:
"""
Remove a causal edge.
Parameters
----------
source : str
Source node
target : str
Target node
"""
if self.graph.has_edge(source, target):
self.graph.remove_edge(source, target)
self.edges = [e for e in self.edges if not (e.source == source and e.target == target)]
def _would_create_cycle(self, source: str, target: str) -> bool:
"""
Check if adding an edge would create a cycle.
Parameters
----------
source : str
Source node
target : str
Target node
Returns
-------
bool
True if edge would create cycle
"""
# Add nodes if they don't exist
if source not in self.graph:
self.graph.add_node(source)
if target not in self.graph:
self.graph.add_node(target)
# Temporarily add edge and check for cycles
self.graph.add_edge(source, target)
has_cycle = not nx.is_directed_acyclic_graph(self.graph)
self.graph.remove_edge(source, target)
return has_cycle
def get_parents(self, node: str) -> List[str]:
"""
Get direct parents (causes) of a node.
Parameters
----------
node : str
Node identifier
Returns
-------
List[str]
List of parent nodes
"""
return list(self.graph.predecessors(node))
def get_children(self, node: str) -> List[str]:
"""
Get direct children (effects) of a node.
Parameters
----------
node : str
Node identifier
Returns
-------
List[str]
List of child nodes
"""
return list(self.graph.successors(node))
def get_ancestors(self, node: str) -> Set[str]:
"""
Get all ancestors (causes) of a node.
Parameters
----------
node : str
Node identifier
Returns
-------
Set[str]
Set of ancestor nodes
"""
return nx.ancestors(self.graph, node)
def get_descendants(self, node: str) -> Set[str]:
"""
Get all descendants (effects) of a node.
Parameters
----------
node : str
Node identifier
Returns
-------
Set[str]
Set of descendant nodes
"""
return nx.descendants(self.graph, node)
def get_topological_order(self) -> List[str]:
"""
Get topological ordering of nodes.
This is useful for computing values in causal order.
Returns
-------
List[str]
Nodes in topological order
"""
return list(nx.topological_sort(self.graph))
def is_ancestor(self, node1: str, node2: str) -> bool:
"""
Check if node1 is an ancestor of node2.
Parameters
----------
node1 : str
Potential ancestor
node2 : str
Potential descendant
Returns
-------
bool
True if node1 is ancestor of node2
"""
return node1 in self.get_ancestors(node2)
def is_descendant(self, node1: str, node2: str) -> bool:
"""
Check if node1 is a descendant of node2.
Parameters
----------
node1 : str
Potential descendant
node2 : str
Potential ancestor
Returns
-------
bool
True if node1 is descendant of node2
"""
return node1 in self.get_descendants(node2)
def get_markov_blanket(self, node: str) -> Set[str]:
"""
Get Markov blanket of a node.
The Markov blanket includes: parents, children, and co-parents
(other parents of children).
Parameters
----------
node : str
Node identifier
Returns
-------
Set[str]
Markov blanket nodes
"""
parents = set(self.get_parents(node))
children = set(self.get_children(node))
# Get co-parents (parents of children)
co_parents = set()
for child in children:
co_parents.update(self.get_parents(child))
co_parents.discard(node)
return parents | children | co_parents
def d_separated(self, X: Set[str], Y: Set[str], Z: Set[str]) -> bool:
"""
Test if X and Y are d-separated given Z.
This is fundamental for determining conditional independence.
Parameters
----------
X : Set[str]
First set of nodes
Y : Set[str]
Second set of nodes
Z : Set[str]
Conditioning set
Returns
-------
bool
True if X and Y are d-separated given Z
"""
return nx.d_separated(self.graph, X, Y, Z)
def visualize(self, output_path: Optional[str] = None) -> None:
"""
Visualize the causal graph.
Parameters
----------
output_path : str, optional
Path to save visualization
"""
try:
import matplotlib.pyplot as plt
pos = nx.spring_layout(self.graph)
plt.figure(figsize=(12, 8))
nx.draw(
self.graph,
pos,
with_labels=True,
node_color='lightblue',
node_size=3000,
font_size=10,
font_weight='bold',
arrows=True,
arrowsize=20,
edge_color='gray'
)
plt.title(f"Causal Graph: {self.name}")
if output_path:
plt.savefig(output_path)
else:
plt.show()
except ImportError:
print("Matplotlib required for visualization")
def to_dict(self) -> Dict[str, Any]:
"""
Convert graph to dictionary representation.
Returns
-------
dict
Dictionary representation
"""
return {
'name': self.name,
'nodes': [
{'id': node, **self.node_metadata.get(node, {})}
for node in self.graph.nodes()
],
'edges': [
{
'source': edge.source,
'target': edge.target,
'strength': edge.strength,
'confidence': edge.confidence,
'mechanism': edge.mechanism
}
for edge in self.edges
]
}
def to_json(self, path: str) -> None:
"""
Save graph to JSON file.
Parameters
----------
path : str
Output file path
"""
with open(path, 'w') as f:
json.dump(self.to_dict(), f, indent=2)
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'CausalGraph':
"""
Load graph from dictionary.
Parameters
----------
data : dict
Dictionary representation
Returns
-------
CausalGraph
Loaded graph
"""
graph = cls(name=data['name'])
# Add nodes
for node_data in data['nodes']:
graph.add_node(
node_data['id'],
node_type=node_data.get('type', 'variable'),
metadata=node_data.get('metadata', {})
)
# Add edges
for edge_data in data['edges']:
graph.add_edge(
edge_data['source'],
edge_data['target'],
strength=edge_data.get('strength', 1.0),
confidence=edge_data.get('confidence', 1.0),
mechanism=edge_data.get('mechanism', '')
)
return graph
@classmethod
def from_json(cls, path: str) -> 'CausalGraph':
"""
Load graph from JSON file.
Parameters
----------
path : str
Input file path
Returns
-------
CausalGraph
Loaded graph
"""
with open(path, 'r') as f:
data = json.load(f)
return cls.from_dict(data)
class StructuralCausalModel:
"""
Structural Causal Model (SCM) with functional equations.
An SCM defines how each variable is generated from its parents
and exogenous noise.
"""
def __init__(self, causal_graph: CausalGraph):
"""
Initialize structural causal model.
Parameters
----------
causal_graph : CausalGraph
Underlying causal graph
"""
self.graph = causal_graph
self.functions: Dict[str, Callable] = {}
self.noise_distributions: Dict[str, Any] = {}
def set_function(
self,
node: str,
function: Callable,
noise_dist: Optional[Any] = None
) -> None:
"""
Set structural equation for a node.
Parameters
----------
node : str
Node identifier
function : callable
Function that computes node value from parents
Signature: f(parent_values, noise) -> value
noise_dist : optional
Noise distribution for this variable
"""
self.functions[node] = function
if noise_dist is not None:
self.noise_distributions[node] = noise_dist
def sample(
self,
n_samples: int = 1,
interventions: Optional[Dict[str, float]] = None
) -> Dict[str, np.ndarray]:
"""
Sample from the structural causal model.
Parameters
----------
n_samples : int
Number of samples to generate
interventions : dict, optional
Dictionary of interventions {node: value}
Returns
-------
dict
Dictionary of samples for each variable
"""
samples = {node: np.zeros(n_samples) for node in self.graph.graph.nodes()}
# Sample in topological order
for node in self.graph.get_topological_order():
# Check if this node is intervened upon
if interventions and node in interventions:
samples[node] = np.full(n_samples, interventions[node])
else:
# Get parent values
parents = self.graph.get_parents(node)
parent_values = {p: samples[p] for p in parents}
# Sample noise
if node in self.noise_distributions:
noise = self.noise_distributions[node].rvs(n_samples)
else:
noise = np.zeros(n_samples)
# Compute value using structural equation
if node in self.functions:
samples[node] = self.functions[node](parent_values, noise)
else:
# Default: just use noise
samples[node] = noise
return samples
def compute_counterfactual(
self,
observed: Dict[str, float],
interventions: Dict[str, float]
) -> Dict[str, float]:
"""
Compute counterfactual: What would happen if we intervened?
Parameters
----------
observed : dict
Observed values
interventions : dict
Interventions to apply
Returns
-------
dict
Counterfactual values
"""
# This is a simplified version
# Full counterfactual computation requires abduction-action-prediction
# For now, we sample with interventions
samples = self.sample(n_samples=1000, interventions=interventions)
# Return means
return {node: np.mean(values) for node, values in samples.items()}