ssc-bew-mms-model-mix-adapt-max3-devtrain

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5232
  • Cer: 0.1493
  • Wer: 0.4536

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 1
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
0.5415 0.4920 200 0.5600 0.1618 0.4943
0.5541 0.9840 400 0.5432 0.1611 0.4941
0.5282 1.4748 600 0.5389 0.1541 0.4669
0.5117 1.9668 800 0.5340 0.1549 0.4759
0.4838 2.4576 1000 0.5371 0.1541 0.4689
0.4974 2.9496 1200 0.5348 0.1527 0.4646
0.4507 3.4403 1400 0.5267 0.1503 0.4536
0.4644 3.9323 1600 0.5283 0.1508 0.4592
0.4739 4.4231 1800 0.5228 0.1496 0.4553
0.4471 4.9151 2000 0.5232 0.1493 0.4536

Framework versions

  • Transformers 4.52.1
  • Pytorch 2.9.1+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
11
Safetensors
Model size
1.0B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Evaluation results