ssc-bew-mms-model-mix-adapt-max3-devtrain
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5232
- Cer: 0.1493
- Wer: 0.4536
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 1
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer |
|---|---|---|---|---|---|
| 0.5415 | 0.4920 | 200 | 0.5600 | 0.1618 | 0.4943 |
| 0.5541 | 0.9840 | 400 | 0.5432 | 0.1611 | 0.4941 |
| 0.5282 | 1.4748 | 600 | 0.5389 | 0.1541 | 0.4669 |
| 0.5117 | 1.9668 | 800 | 0.5340 | 0.1549 | 0.4759 |
| 0.4838 | 2.4576 | 1000 | 0.5371 | 0.1541 | 0.4689 |
| 0.4974 | 2.9496 | 1200 | 0.5348 | 0.1527 | 0.4646 |
| 0.4507 | 3.4403 | 1400 | 0.5267 | 0.1503 | 0.4536 |
| 0.4644 | 3.9323 | 1600 | 0.5283 | 0.1508 | 0.4592 |
| 0.4739 | 4.4231 | 1800 | 0.5228 | 0.1496 | 0.4553 |
| 0.4471 | 4.9151 | 2000 | 0.5232 | 0.1493 | 0.4536 |
Framework versions
- Transformers 4.52.1
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.21.4
- Downloads last month
- 11