ssc-hch-mms-model-mix-adapt-max3-devtrain

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2614
  • Cer: 0.1088
  • Wer: 0.6374

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 1
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
0.3141 0.4739 200 0.2800 0.1156 0.6619
0.3367 0.9479 400 0.2720 0.1125 0.6523
0.2839 1.4218 600 0.2836 0.1166 0.6643
0.3091 1.8957 800 0.2665 0.1116 0.6487
0.2442 2.3697 1000 0.2818 0.1131 0.6497
0.249 2.8436 1200 0.2785 0.1124 0.6550
0.2169 3.3175 1400 0.2674 0.1117 0.6481
0.2255 3.7915 1600 0.2593 0.1092 0.6400
0.2075 4.2654 1800 0.2625 0.1087 0.6307
0.2047 4.7393 2000 0.2614 0.1088 0.6374

Framework versions

  • Transformers 4.52.1
  • Pytorch 2.9.1+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
17
Safetensors
Model size
1.0B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Evaluation results