ssc-ruc-mms-model-mix-adapt-max3-devtrain

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4251
  • Cer: 0.1371
  • Wer: 0.5761

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 1
  • eval_batch_size: 6
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Cer Wer
0.4996 0.2972 200 0.4369 0.1393 0.5967
0.432 0.5944 400 0.4474 0.1428 0.5980
0.4283 0.8915 600 0.4476 0.1432 0.5990
0.501 1.1887 800 0.4384 0.1404 0.5962
0.4071 1.4859 1000 0.4414 0.1402 0.5942
0.4261 1.7831 1200 0.4387 0.1394 0.5916
0.4046 2.0802 1400 0.4434 0.1416 0.5928
0.4214 2.3774 1600 0.4495 0.1396 0.5932
0.364 2.6746 1800 0.4416 0.1385 0.5839
0.4308 2.9718 2000 0.4304 0.1401 0.5847
0.3437 3.2689 2200 0.4393 0.1388 0.5825
0.4251 3.5661 2400 0.4273 0.1386 0.5795
0.5201 3.8633 2600 0.4277 0.1367 0.5727
0.3671 4.1605 2800 0.4273 0.1374 0.5743
0.4012 4.4577 3000 0.4275 0.1362 0.5713
0.3537 4.7548 3200 0.4251 0.1371 0.5761

Framework versions

  • Transformers 4.52.1
  • Pytorch 2.9.1+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.4
Downloads last month
17
Safetensors
Model size
1.0B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Evaluation results