🎯 Jekyll Master AI

Fine-tuned DeepSeek-Coder model specialized in Jekyll static site generator.

Model Description

This model is fine-tuned from DeepSeek-Coder-1.3B to become an expert in Jekyll, a static site generator written in Ruby.

Specializations:

  • Liquid templating language
  • YAML configuration files (_config.yml)
  • Jekyll plugins development
  • Sass/SCSS styling
  • GitHub Pages deployment
  • SEO optimization

Training Data

The model was fine-tuned on 192 examples covering:

  • Configuration files (15%)
  • Layouts & templates (20%)
  • Includes & components (15%)
  • Plugins (10%)
  • Sass/SCSS (15%)
  • Liquid filters (10%)
  • Deployment configs (10%)
  • Front matter & Data files (5%)

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel

# Load base model
base_model = "deepseek-ai/deepseek-coder-1.3b-instruct"
model = AutoModelForCausalLM.from_pretrained(base_model)
tokenizer = AutoTokenizer.from_pretrained(base_model)

# Load adapter
model = PeftModel.from_pretrained(model, "daffaaditya/jekyll-master-ai")

# Generate code
prompt = "Buat file _config.yml untuk blog teknologi"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=500)
print(tokenizer.decode(outputs[0]))
Downloads last month
18
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for daffaaditya/jekyll-master-ai

Finetuned
(76)
this model

Dataset used to train daffaaditya/jekyll-master-ai

Space using daffaaditya/jekyll-master-ai 1