Data Repetition
Collection
117 items
•
Updated
This repo is a collection of SFT checkpoints produced by sweeping unique training samples vs epochs, following the setup from the paper:
Data Repetition Beats Data Scaling in Long-CoT Supervised Fine-Tuning https://arxiv.org/abs/2602.11149
The repo root contains the weights and config for the default variant trained with 16 epochs on 800 samples.
Calling from_pretrained(repo_id) loads this checkpoint.
Each subfolder follows:
s{N}_e{M}
where:
Example names:
Load the default model (root):
from transformers import AutoModelForCausalLM, AutoTokenizer
repo_id = "dakopi/olmo3-7b_data-repetition"
tokenizer = AutoTokenizer.from_pretrained(repo_id)
model = AutoModelForCausalLM.from_pretrained(repo_id)
Load a specific variant (subfolder):
from transformers import AutoModelForCausalLM, AutoTokenizer
repo_id = "dakopi/olmo3-7b_data-repetition"
variant = "s6400_e4"
tokenizer = AutoTokenizer.from_pretrained(repo_id, subfolder=variant)
model = AutoModelForCausalLM.from_pretrained(repo_id, subfolder=variant)
Official training and evaluation code: https://github.com/dkopi/data-repetition
@misc{kopiczko2026datarepetitionbeatsdata,
title = {Data Repetition Beats Data Scaling in Long-CoT Supervised Fine-Tuning},
author = {Dawid J. Kopiczko and Sagar Vaze and Tijmen Blankevoort and Yuki M. Asano},
year = {2026},
eprint = {2602.11149},
archivePrefix= {arXiv},
primaryClass = {cs.CL},
url = {https://arxiv.org/abs/2602.11149}
}
Base model
allenai/Olmo-3-1025-7B