Datasets:
license: cc-by-4.0
task_categories:
- other
tags:
- physics
- high-energy-physics
- particle-physics
- collider-physics
- tracking
- calorimetry
- machine-learning
- simulation
- particle-tracking
- jet-tagging
pretty_name: ColliderML Dataset Release 1
size_categories:
- 100K<n<1M
configs:
- config_name: dihiggs_pu0_calo_hits
data_files:
- split: train
path: data/dihiggs_pu0_calo_hits/*.parquet
- config_name: dihiggs_pu0_particles
data_files:
- split: train
path: data/dihiggs_pu0_particles/*.parquet
- config_name: dihiggs_pu0_tracker_hits
data_files:
- split: train
path: data/dihiggs_pu0_tracker_hits/*.parquet
- config_name: dihiggs_pu0_tracks
data_files:
- split: train
path: data/dihiggs_pu0_tracks/*.parquet
- config_name: dihiggs_pu200_calo_hits
data_files:
- split: train
path: data/dihiggs_pu200_calo_hits/*.parquet
- config_name: dihiggs_pu200_particles
data_files:
- split: train
path: data/dihiggs_pu200_particles/*.parquet
- config_name: dihiggs_pu200_tracker_hits
data_files:
- split: train
path: data/dihiggs_pu200_tracker_hits/*.parquet
- config_name: dihiggs_pu200_tracks
data_files:
- split: train
path: data/dihiggs_pu200_tracks/*.parquet
- config_name: ggf_pu0_calo_hits
data_files:
- split: train
path: data/ggf_pu0_calo_hits/*.parquet
- config_name: ggf_pu0_particles
data_files:
- split: train
path: data/ggf_pu0_particles/*.parquet
- config_name: ggf_pu0_tracker_hits
data_files:
- split: train
path: data/ggf_pu0_tracker_hits/*.parquet
- config_name: ggf_pu0_tracks
data_files:
- split: train
path: data/ggf_pu0_tracks/*.parquet
- config_name: ggf_pu200_calo_hits
data_files:
- split: train
path: data/ggf_pu200_calo_hits/*.parquet
- config_name: ggf_pu200_particles
data_files:
- split: train
path: data/ggf_pu200_particles/*.parquet
- config_name: ggf_pu200_tracker_hits
data_files:
- split: train
path: data/ggf_pu200_tracker_hits/*.parquet
- config_name: ggf_pu200_tracks
data_files:
- split: train
path: data/ggf_pu200_tracks/*.parquet
- config_name: ttbar_pu0_calo_hits
data_files:
- split: train
path: data/ttbar_pu0_calo_hits/*.parquet
- config_name: ttbar_pu0_particles
data_files:
- split: train
path: data/ttbar_pu0_particles/*.parquet
- config_name: ttbar_pu0_tracker_hits
data_files:
- split: train
path: data/ttbar_pu0_tracker_hits/*.parquet
- config_name: ttbar_pu0_tracks
data_files:
- split: train
path: data/ttbar_pu0_tracks/*.parquet
- config_name: ttbar_pu200_calo_hits
data_files:
- split: train
path: data/ttbar_pu200_calo_hits/*.parquet
- config_name: ttbar_pu200_particles
data_files:
- split: train
path: data/ttbar_pu200_particles/*.parquet
- config_name: ttbar_pu200_tracker_hits
data_files:
- split: train
path: data/ttbar_pu200_tracker_hits/*.parquet
- config_name: ttbar_pu200_tracks
data_files:
- split: train
path: data/ttbar_pu200_tracks/*.parquet
- config_name: zee_pu200_calo_hits
data_files:
- split: train
path: data/zee_pu200_calo_hits/*.parquet
- config_name: zee_pu200_particles
data_files:
- split: train
path: data/zee_pu200_particles/*.parquet
- config_name: zee_pu200_tracker_hits
data_files:
- split: train
path: data/zee_pu200_tracker_hits/*.parquet
- config_name: zee_pu200_tracks
data_files:
- split: train
path: data/zee_pu200_tracks/*.parquet
- config_name: zmumu_pu200_calo_hits
data_files:
- split: train
path: data/zmumu_pu200_calo_hits/*.parquet
- config_name: zmumu_pu200_particles
data_files:
- split: train
path: data/zmumu_pu200_particles/*.parquet
- config_name: zmumu_pu200_tracker_hits
data_files:
- split: train
path: data/zmumu_pu200_tracker_hits/*.parquet
- config_name: zmumu_pu200_tracks
data_files:
- split: train
path: data/zmumu_pu200_tracks/*.parquet
ColliderML: Dataset Release 1
Dataset Description
This dataset contains simulated high-energy physics collision events generated using the Open Data Detector (ODD) geometry within the Key4hep and ACTS (A Common Tracking Software) frameworks, representing a generic collider detector similar to those at the HL-LHC.
Dataset Summary
- Collision Energy: 14 TeV (proton-proton)
- Detector: Open Data Detector (ODD)
- Simulation: DD4hep + Geant4 + ACTS
- Format: Apache Parquet with list columns for variable-length data
- License: CC-BY-4.0
Available Configurations
The dataset is organized into multiple configurations, each representing a combination of:
- Physics process (e.g., ttbar, ggf, dihiggs)
- Pileup condition (pu0 = no pileup, pu200 = HL-LHC pileup)
- Object type (particles, tracker_hits, calo_hits, tracks)
Supported Tasks
This dataset is designed for machine learning tasks in high-energy physics, including:
- Particle tracking: Reconstruct charged particle trajectories from detector hits
- Track-to-particle matching: Associate reconstructed tracks with truth particles
- Jet tagging: Identify jets originating from top quarks, b-quarks, or light quarks
- Energy reconstruction: Predict particle energies from calorimeter deposits
- Physics analysis: Event classification (signal vs. background discrimination)
- Representation learning: Study hierarchical information at different detector levels
Quick Start
Installation
pip install datasets pyarrow
Load a Configuration
from datasets import load_dataset
# Load truth particles from ttbar (no pileup)
particles = load_dataset(
"OpenDataDetector/ColliderML-Release-1",
"ttbar_pu0_particles",
split="train"
)
print(f"Loaded {len(particles)} events")
print(f"Columns: {particles.column_names}")
Load First 100 Events with Specific Columns
from datasets import load_dataset
import numpy as np
# Load only specific columns
particles = load_dataset(
"OpenDataDetector/ColliderML-Release-1",
"ttbar_pu0_particles",
split="train[:100]",
columns=["event_id", "px", "py", "pz", "energy", "pdg_id"]
)
# Process events
for event in particles:
px = np.array(event['px'])
py = np.array(event['py'])
pt = np.sqrt(px**2 + py**2)
print(f"Event {event['event_id']}: {len(px)} particles, mean pT = {pt.mean():.2f} GeV")
Dataset Structure
Data Instances
Each row represents a single collision event. Variable-length quantities (particles, hits, tracks) are stored as Parquet list columns.
Example event structure:
{
'event_id': 42,
'particle_id': [0, 1, 2, 3, ...],
'pdg_id': [11, -11, 211, ...],
'px': [1.2, -0.5, 3.4, ...],
'py': [0.8, 1.1, -0.3, ...],
'pz': [5.2, -2.1, 10.5, ...],
'energy': [5.5, 2.3, 11.2, ...],
# ... additional fields
}
Data Fields by Object Type
1. particles (Truth-level)
Truth information about generated particles before detector simulation.
| Field | Type | Description |
|---|---|---|
event_id |
uint32 | Unique event identifier |
particle_id |
list<uint64> | Unique particle ID within event |
pdg_id |
list<int64> | PDG particle code (11=electron, 13=muon, 211=pion, etc.) |
mass |
list<float32> | Particle rest mass (GeV/c²) |
energy |
list<float32> | Particle total energy (GeV) |
charge |
list<float32> | Electric charge (units of e) |
px, py, pz |
list<float32> | Momentum components (GeV/c) |
vx, vy, vz |
list<float32> | Vertex position (mm) |
time |
list<float32> | Production time (ns) |
perigee_d0 |
list<float32> | Perigee transverse impact parameter (mm) |
perigee_z0 |
list<float32> | Perigee longitudinal impact parameter (mm) |
num_tracker_hits |
list<uint16> | Number of hits in tracker |
num_calo_hits |
list<uint16> | Number of hits in calorimeter |
primary |
list<bool> | Whether particle is primary |
vertex_primary |
list<uint16> | Primary vertex index (1=hard scatter) |
parent_id |
list<int64> | ID of parent particle (-1 if none) |
2. tracker_hits (Detector-level)
Digitized spatial measurements from the tracking detector (silicon sensors).
| Field | Type | Description |
|---|---|---|
event_id |
uint32 | Unique event identifier |
x, y, z |
list<float32> | Measured hit position (mm) |
true_x, true_y, true_z |
list<float32> | True hit position before digitization (mm) |
time |
list<float32> | Hit time (ns) |
particle_id |
list<uint64> | Truth particle that created this hit |
volume_id |
list<uint8> | Detector volume identifier |
layer_id |
list<uint16> | Detector layer number |
surface_id |
list<uint32> | Sensor surface identifier |
detector |
list<uint8> | Detector subsystem code |
3. calo_hits (Calorimeter-level)
Energy deposits in the calorimeter system (electromagnetic + hadronic).
| Field | Type | Description |
|---|---|---|
event_id |
uint32 | Unique event identifier |
detector |
list<uint8> | Calorimeter subsystem code |
total_energy |
list<float32> | Total energy deposited in cell (GeV) |
x, y, z |
list<float32> | Cell center position (mm) |
contrib_particle_ids |
list<list<uint64>> | IDs of particles contributing to this cell |
contrib_energies |
list<list<float32>> | Energy contribution from each particle (GeV) |
contrib_times |
list<list<float32>> | Time of each contribution (ns) |
4. tracks (Reconstruction-level)
Reconstructed particle tracks from ACTS pattern recognition and track fitting.
| Field | Type | Description |
|---|---|---|
event_id |
uint32 | Unique event identifier |
track_id |
list<uint16> | Unique track identifier within event |
majority_particle_id |
list<uint64> | Truth particle with most hits on this track |
d0 |
list<float32> | Transverse impact parameter (mm) |
z0 |
list<float32> | Longitudinal impact parameter (mm) |
phi |
list<float32> | Azimuthal angle (radians) |
theta |
list<float32> | Polar angle (radians) |
qop |
list<float32> | Charge divided by momentum (e/GeV) |
hit_ids |
list<list<uint32>> | List of tracker hit IDs on this track |
Derived quantities for tracks:
- Transverse momentum:
pt = abs(1/qop) * sin(theta) - Pseudorapidity:
eta = -ln(tan(theta/2)) - Total momentum:
p = abs(1/qop)
Dataset Creation
Simulation Chain
- Event Generation: MadGraph5 + Pythia8 for hard scatter and parton shower
- Detector Simulation: Geant4 via DD4hep with the Open Data Detector geometry
- Digitization: Realistic detector response simulation
- Reconstruction: ACTS track finding and fitting algorithms
- Format Conversion: EDM4HEP → Parquet using the ColliderML pipeline
Software Stack
- ACTS: A Common Tracking Software - https://acts.readthedocs.io/
- Open Data Detector: https://github.com/acts-project/odd
- Key4hep: https://key4hep.github.io/
- EDM4HEP: https://edm4hep.web.cern.ch/
Citation
If you use this dataset in your research, please cite:
@dataset{colliderml_release1_2025,
title={{ColliderML Dataset Release 1}},
author={{ColliderML Collaboration}},
year={2025},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/datasets/OpenDataDetector/ColliderML-Release-1}},
note={Simulation performed using ACTS and the Open Data Detector}
}
Support
For questions, issues, or feature requests:
Acknowledgments
This work was supported by:
- NERSC computing resources (National Energy Research Scientific Computing Center)
- U.S. Department of Energy, Office of Science
- Danish Data Science Academy (DDSA)
Release Version: 1.0
Last Updated: November 2025