The dataset viewer is not available for this split.
Error code: FeaturesError
Exception: ArrowInvalid
Message: Schema at index 3 was different:
backend_name: string
timestamp: string
num_qubits: int64
version: string
basis_gates: list<item: string>
properties_timestamp: timestamp[s]
vs
backend: string
backend_type: string
noise_source: string
experiment_mode: string
measurement_basis: string
circuit_mode: string
mu: int64
shots: int64
counts: struct<1110: int64, 1011: int64, 0010: int64, 1001: int64, 1000: int64, 0100: int64, 1100: int64, 1010: int64, 0110: int64, 0011: int64, 0001: int64, 0111: int64, 1101: int64, 1111: int64, 0101: int64, 0000: int64>
W_X: double
W_X_error: double
W_X_ideal: double
W_X_tilde: double
W_X_tilde_error: double
parity_counts: struct<n_even: int64, n_odd: int64, p_even: double, p_odd: double>
circuit_stats: struct<num_qubits: int64, num_clbits: int64, depth: int64, size: int64, gate_counts: struct<h: int64, cx: int64, x: int64>, two_qubit_gate_count: int64>
transpiled_depth: int64
transpiled_size: int64
optimization_level: int64
noise_params: struct<T1_us: int64, T2_us: int64, single_qubit_error_pct: double, two_qubit_error_pct: double, readout_error_pct: double>
timestamp: string
qiskit_version: struct<qiskit: string, qiskit_aer: string>
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
iterable_dataset = iterable_dataset._resolve_features()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
features = _infer_features_from_batch(self.with_format(None)._head())
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
return next(iter(self.iter(batch_size=n)))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
for key, example in iterator:
^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
for key, pa_table in self._iter_arrow():
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
yield from self.ex_iterable._iter_arrow()
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 531, in _iter_arrow
yield new_key, pa.Table.from_batches(chunks_buffer)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "pyarrow/table.pxi", line 5039, in pyarrow.lib.Table.from_batches
File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Schema at index 3 was different:
backend_name: string
timestamp: string
num_qubits: int64
version: string
basis_gates: list<item: string>
properties_timestamp: timestamp[s]
vs
backend: string
backend_type: string
noise_source: string
experiment_mode: string
measurement_basis: string
circuit_mode: string
mu: int64
shots: int64
counts: struct<1110: int64, 1011: int64, 0010: int64, 1001: int64, 1000: int64, 0100: int64, 1100: int64, 1010: int64, 0110: int64, 0011: int64, 0001: int64, 0111: int64, 1101: int64, 1111: int64, 0101: int64, 0000: int64>
W_X: double
W_X_error: double
W_X_ideal: double
W_X_tilde: double
W_X_tilde_error: double
parity_counts: struct<n_even: int64, n_odd: int64, p_even: double, p_odd: double>
circuit_stats: struct<num_qubits: int64, num_clbits: int64, depth: int64, size: int64, gate_counts: struct<h: int64, cx: int64, x: int64>, two_qubit_gate_count: int64>
transpiled_depth: int64
transpiled_size: int64
optimization_level: int64
noise_params: struct<T1_us: int64, T2_us: int64, single_qubit_error_pct: double, two_qubit_error_pct: double, readout_error_pct: double>
timestamp: string
qiskit_version: struct<qiskit: string, qiskit_aer: string>Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
IBM-QML-Kernel Branch-Transfer Benchmarks (ibm-qml-kernel)
Dataset Summary
This dataset is the reproducibility artifact bundle corresponding to the arXiv submission:
“Wigner's Friend as a Circuit: Inter-Branch Communication Witness Benchmarks on Superconducting Quantum Hardware.”
- GitHub release checkpoint: v1.0-wigner-branch-benchmark
- Paper page: https://huggingface.co/papers/2601.16004
- GitHub: https://github.com/christopher-altman/ibm-qml-kernel
It snapshots the experimental and simulation outputs for a five‑qubit “branch‑transfer / message‑transfer” circuit primitive (message transfer in the compiled circuit / measurement record sense, not physical signaling), executed on IBM Quantum hardware and mirrored with backend‑matched noisy simulations.
What’s inside (high level)
The release is designed as a “stable, citeable checkpoint” and includes, at minimum:
- Hardware execution on IBM Quantum
ibm_fez(N = 20,000 shots). - Coherence-sensitive witness evaluation (X and Y bases) + a visibility baseline.
- Backend-matched noisy simulations using calibration-synchronized noise models.
- Execution provenance: IBM Quantum job IDs + backend calibration snapshots.
- Deterministic figure regeneration from archived artifacts.
- Tamper-evident manifest: SHA256 hashes for bundle files.
(See the GitHub release notes for the canonical inventory.)
Intended Use
This dataset is for:
- Reproducing figures/tables/values from the associated paper.
- Auditing compilation + noise impacts on the reported witnesses.
- Serving as a reference artifact for future “branch-transfer / inter-branch witness” benchmark runs on other devices/backends.
Not intended for: training NLP/Vision models. It’s an experiment + provenance bundle.
How to Use
Option A — download the full artifact snapshot (recommended for exact reproduction)
For non-tabular artifacts (plots, calibration dumps, intermediate files), the most faithful workflow is to download the full repository snapshot:
from huggingface_hub import snapshot_download
local_dir = snapshot_download(
repo_id="Cohaerence/wigner-friend-v2b",
repo_type="dataset",
)
print(local_dir)
Option B — datasets.load_dataset(...) (best if files are extracted + structured)
Hugging Face Datasets works best when the dataset includes common formats like csv, jsonl, or parquet, optionally referenced via data_files=.
from datasets import load_dataset
ds = load_dataset("Cohaerence/wigner-friend-v2b")
print(ds)
Docs: https://huggingface.co/docs/datasets/loading
Reproduction Quickstart (paper-aligned)
These commands reflect the intended “paper-aligned” reproduction workflow described in the release notes:
# Verify IBM Quantum connectivity
python -c "from qiskit_ibm_runtime import QiskitRuntimeService as S; s=S(); bs=s.backends(simulator=False, operational=True); print('n_backends=', len(bs))"
# Hardware coherence witness (X + Y bases)
python -m experiments.branch_transfer.run_ibm --backend ibm_fez --mode coherence_witness --include-y-basis --shots 20000 --optimization-level 2
# Hardware visibility (rp_z mode)
python -m experiments.branch_transfer.run_ibm --backend ibm_fez --mode rp_z --mu 1 --shots 20000 --optimization-level 2
# Backend-matched noisy simulations
python -m experiments.branch_transfer.run_sim --mode coherence_witness --include-y-basis --mu 1 --shots 20000 --noise-from-backend ibm_fez
python -m experiments.branch_transfer.run_sim --mode rp_z --mu 1 --shots 20000 --noise-from-backend ibm_fez
# Generate analysis figures
python -m experiments.branch_transfer.analyze --artifacts-dir artifacts/branch_transfer --figures-dir artifacts/branch_transfer/figures --plot-all
Citations
arXiv:2601.16004 — “Wigner's Friend as a Circuit: Inter-Branch Communication Witness Benchmarks on Superconducting Quantum Hardware.”
https://arxiv.org/abs/2601.16004Code + artifact checkpoint: GitHub release tag
v1.0-wigner-branch-benchmark.
https://github.com/christopher-altman/ibm-qml-kernel/releases/tag/v1.0-wigner-branch-benchmark
References
Violaris, M. (2026). Quantum observers can communicate across multiverse branches. arXiv:2601.08102. arXiv:2601.08102
Mukherjee, S. and Hance, J. Limits of absoluteness of observed events in timelike scenarios: A no-go theorem, arXiv:2510.26562. arXiv:2510.26562
License
MIT License. See LICENSE for details.
Contact
- Website: christopheraltman.com
- Research portfolio: https://lab.christopheraltman.com/
- GitHub: github.com/christopher-altman
- Google Scholar: scholar.google.com/citations?user=tvwpCcgAAAAJ
- Email: x@christopheraltman.com
Christopher Altman (2026)
- Downloads last month
- -