Datasets:
ArXiv:
License:
| license: cc-by-4.0 | |
| # Dataset Card for CrediBench 1.1 | |
| <!-- Provide a quick summary of the dataset. --> | |
| CrediBench 1.1 is a large-scale, temporal webgraph constituted of web data pulled from [Common Crawl](https://commoncrawl.org/overview). | |
| A prior version of the paper is [available here](https://arxiv.org/abs/2509.23340) (NPGML workshop @ NeurIPS 2025), with the latest version still under review. | |
| CrediBench 1.0, presented in this prior work, constituted of a static webgraph with 1 month's data, while the current version contains 3 months of data (October to December 2024, surrounding the U.S Federal elections, a period of increased misinformation). | |
| ## Dataset Details | |
| ### Dataset Description | |
| <!-- Provide a longer summary of what this dataset is. --> | |
| This dataset is composed of monthly slices of large-scale web networks. These webgraphs contain 1+ billion edges, and 45+ million nodes per month. | |
| In these webgraphs, the nodes represent a website domain (e.g, `google.com`) and an edge represents a directed hyperlink relation (e.g, an edge from `cbc.ca` to `reuters.com` indicates that a page on `cbc.ca`'s website contains a hyperlink to a `reuters.com` page). | |
| These webgraphs are supplemented with text attributes, partly from Common Crawl and from web scraping, as text features play an important role in misinformation detection. | |
| Additionally, we supplement them with credibility scores as made available by [Lin et al.](https://github.com/hauselin/domain-quality-ratings/tree/main/data), to enable supervised and semi-supervised learning as explained in our paper. | |
| - **Curated by** a team of collaborators from the Complex Data Lab @ Mila - Quebec AI Institute, the University of Oxford, McGill University, Concordia University, UC Berkeley, University of Montreal, and AITHYRA. | |
| - **Funding:** This research was supported by the Engineering and Physical Sciences Research Council (EPSRC) and the AI Security Institute (AISI) grant: | |
| *Towards Trustworthy AI Agents for Information Veracity and the EPSRC Turing AI World-Leading Research Fellowship No. EP/X040062/1 and EPSRC AI | |
| Hub No. EP/Y028872/1*. This research was also enabled in part by compute resources provided by Mila (mila.quebec) and Compute Canada. | |
| - **License:** CC-BY-4.0 (as retributed from Common Crawl). | |
| ### Resources | |
| <!-- Provide the basic links for the dataset. --> | |
| - **[Repository](https://github.com/ekmpa/CrediGraph)** | |
| - **[Paper](https://arxiv.org/abs/2509.23340)** | |
| - **[Common Crawl](https://commoncrawl.org/overview)** is our primary data source, supplemented with web scraping and multiple datasets for credibility signals: | |
| - [DQR](https://github.com/hauselin/domain-quality-ratings/tree/main/data) for credibility scores for supervised learning, and | |
| - [Yasin et al.](https://doi.org/10.1016/j.dib.2023.109959)'s phishing domains, | |
| - [Potpelwar et al.](https://doi.org/10.1016/j.dib.2025.111972)'s malware domains, and | |
| - [Aung et al.](https://dl.acm.org/doi/10.1145/3486622.3493983)'s legitimate domains, for semi-supervised learning. | |
| ## Uses | |
| <!-- Address questions around how the dataset is intended to be used. --> | |
| This dataset is intended as a data source for research efforts against misinformation online. Specifically, as the first large-scale, text-attributed webgraph that is also dynamic, | |
| CrediBench stands as an ideal data source for efforts to develop methods for unreliable domain detection based on spatio-temporal cues. | |
| ### Out-of-Scope Use | |
| <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> | |
| This dataset is not intended for LLM training. Designed for the goal of misinformation detection at the domain level and web scale, this dataset contains numerous | |
| domains and content pages that contain innapropriate content which may be harmful if used for training conversational AI, or other types of generative AI outside the scope of our task. | |
| ### Data Collection and Processing | |
| <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> | |
| The process of collection, processing and use is detailed in our team's paper. We collect data through our proposed CrediBench pipeline (available at our repository), | |
| which builds a month's worth of data by pulling from Common Crawl, builds the graph from it and processes it to discard isolated and low-degree nodes. | |
| Each edge has a timestamp, given as the date of the first day of week of the crawl, in format YYYYMMDD. | |
| ## Citation | |
| <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> | |
| **BibTeX:** | |
| ``` | |
| @article{kondrupsabry2025credibench, | |
| title={{CrediBench: Building Web-Scale Network Datasets for Information Integrity}}, | |
| author={Kondrup, Emma and Sabry, Sebastian and Abdallah, Hussein and Yang, Zachary and Zhou, James and Pelrine, Kellin and Godbout, Jean-Fran{\c{c}}ois and Bronstein, Michael and Rabbany, Reihaneh and Huang, Shenyang}, | |
| journal={arXiv preprint arXiv:2509.23340}, | |
| year={2025}, | |
| note={New Perspectives in Graph Machine Learning Workshop @ NeurIPS 2025}, | |
| url={https://arxiv.org/abs/2509.23340} | |
| } | |
| ``` | |
| **APA:** | |
| ``` | |
| Kondrup, E., Sabry, S., Abdallah, H., Yang, Z., Zhou, J., Pelrine, K., Godbout, J.-F., Bronstein, M., Rabbany, R., & Huang, S. (2025). | |
| CrediBench: Building Web-Scale Network Datasets for Information Integrity. | |
| New Perspectives in Graph Machine Learning Workshop @ NeurIPS 2025. arXiv:2509.23340. https://arxiv.org/pdf/2509.23340 | |
| ``` | |
| ## Dataset Card Authors / Contact | |
| For any questions on the dataset, please contact [Emma Kondrup](mailto:emma.kondrup@mila.quebec), [Sebastian Sabry](mailto:sebastian.sabry@mcgill.ca), or [Shenyang (Andy) Huang](mailto:shenyang.huang@mail.mcgill.ca). | |