The dataset viewer is not available for this dataset.
Error code: ConfigNamesError
Exception: ReadTimeout
Message: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 5e8cbc77-8918-4e69-abfd-1335dee81520)')
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
config_names = get_dataset_config_names(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
dataset_module = dataset_module_factory(
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
raise e1 from None
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
).get_module()
^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 591, in get_module
standalone_yaml_path = cached_path(
^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/utils/file_utils.py", line 169, in cached_path
).resolve_path(url_or_filename)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 198, in resolve_path
repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_file_system.py", line 125, in _repo_and_revision_exist
self._api.repo_info(
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2816, in repo_info
return method(
^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/hf_api.py", line 2673, in dataset_info
r = get_session().get(path, headers=headers, timeout=timeout, params=params)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 602, in get
return self.request("GET", url, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 589, in request
resp = self.send(prep, **send_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/sessions.py", line 703, in send
r = adapter.send(request, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/huggingface_hub/utils/_http.py", line 96, in send
return super().send(request, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/requests/adapters.py", line 690, in send
raise ReadTimeout(e, request=request)
requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 5e8cbc77-8918-4e69-abfd-1335dee81520)')Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Geometry of Decision Making in Language Models
Abhinav Joshi · Divyanshu Bhatt · Ashutosh Modi
NeurIPS 2025
This repository contains the official implementation/release for the NeurIPS 2025 paper Geometry of Decision Making in Language Models. We study the internal decision-making processes of large language models through the lens of intrinsic dimension (ID), analyzing how hidden representations evolve across layers in a multiple-choice question answering (MCQA) setting. This repository provides additional experimental results, intrinsic-dimension estimations, and layer-wise performance analysis, that we believe will be a valuable resource for researchers for further exploration in this area.
Picture: In the transformer-based architectures, a vector (latent features) of the same hidden dimensions $d$, is transformed by transformer blocks $f_l$. Though the extrinsic dimension remains the same, we find that the feature space lies on low-dimensional manifolds of different intrinsic dimensions. Intrinsically, there exists a mapping $\phi_l$ corresponding to each $f_l$. We study how these compressed manifolds align with the decision-making process in middle layers. We project the internal representations back to the vocabulary space to inspect the decisiveness. There is a sudden shift in performance that is aligned with the follow-up of a sharp peak observed in the residual-post ID estimates.
Abstract
Large Language Models (LLMs) show strong generalization across diverse tasks, yet the internal decision-making processes behind their predictions remain opaque. In this work, we study the geometry of hidden representations in LLMs through the lens of intrinsic dimension (ID), focusing specifically on decision-making dynamics in a multiple-choice question answering (MCQA) setting. We perform a large-scale study, with 28 open-weight transformer models and estimate ID across layers using multiple estimators, while also quantifying per-layer performance on MCQA tasks. Our findings reveal a consistent ID pattern across models: early layers operate on low-dimensional manifolds, middle layers expand this space, and later layers compress it again, converging to decision-relevant representations. Together, these results suggest LLMs implicitly learn to project linguistic inputs onto structured, low-dimensional manifolds aligned with task-specific decisions, providing new geometric insights into how generalization and reasoning emerge in language models.
Structure
results/
├── dataset_name/
│ ├── fewshot_xx/
│ │ ├── model_id/
│ │ ├── last_token_relative_depth_xx/
│ │ ├── intrinsic/
│ │ ├── results.csv (global intrinsic estimates)
│ │ ├── mle_local_dims
│ │ ├── layer_name.csv (local intrinsic estimates)
│ │ ├── llm_hook_args.json (arguments used for activation collection)
│ │ ├── llm_intrinsic_args.json (arguments used for ID estimation)
│ │ ├── accuracy_layer_name.json (accuracy per layer using logit lens)
│ │ ├── accuracy_output.json (overall accuracy on the dataset)
│ │ ├── predictions.csv (predictions and corresponding ground truths)
Citation
@inproceedings{
joshi2025geometry,
title={Geometry of Decision Making in Language Models},
author={Abhinav Joshi and Divyanshu Bhatt and Ashutosh Modi},
booktitle={The Thirty-ninth Annual Conference on Neural Information Processing Systems},
year={2025},
url={https://openreview.net/forum?id=Jj4NdJtXwp}
}
- Downloads last month
- 7