|
|
import os |
|
|
import time |
|
|
import joblib |
|
|
import numpy as np |
|
|
import pandas as pd |
|
|
|
|
|
from sklearn.model_selection import GridSearchCV |
|
|
from sklearn.svm import LinearSVC |
|
|
from sklearn.metrics import classification_report, confusion_matrix |
|
|
|
|
|
|
|
|
def labels_to_numeric(labels_df): |
|
|
|
|
|
labels_df["Country"] = labels_df["Country"].replace({'BE': 0}) |
|
|
labels_df["Country"] = labels_df["Country"].replace({'CA': 1}) |
|
|
labels_df["Country"] = labels_df["Country"].replace({'CH': 2}) |
|
|
labels_df["Country"] = labels_df["Country"].replace({'FR': 3}) |
|
|
|
|
|
print(np.array(labels_df.values).flatten()) |
|
|
|
|
|
return list(np.array(labels_df.values).flatten()) |
|
|
|
|
|
|
|
|
def load_data(data_dir, feats_fname, labels_fname, scope): |
|
|
|
|
|
feats_path = os.path.join(data_dir, feats_fname) |
|
|
labels_path = os.path.join(data_dir, labels_fname) |
|
|
|
|
|
|
|
|
features = np.loadtxt(feats_path, delimiter=',') |
|
|
print(scope, " features shape: ", features.shape) |
|
|
|
|
|
|
|
|
labels_df = pd.read_csv(labels_path) |
|
|
labels = labels_to_numeric(labels_df) |
|
|
print(scope, " labels length: ", len(labels)) |
|
|
|
|
|
return features, labels |
|
|
|
|
|
|
|
|
|
|
|
def writePredictions(predictions, file_path): |
|
|
d = {0: "BE", 1: "CA", 2: "CH", 3: "FR"} |
|
|
preds = [d[elem] for elem in predictions] |
|
|
df = pd.DataFrame(preds, columns=["Country"]) |
|
|
df.to_csv(file_path, index=False) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
model_file="svm_model.joblib" |
|
|
data_dir = "../data/bert_embeddings/" |
|
|
|
|
|
|
|
|
val_features, val_labels = load_data(data_dir, "val_embeddings.csv", "val_labels.txt", "Validation") |
|
|
test_features, test_labels = load_data(data_dir, "test_embeddings.csv", "test_labels.txt", "Test") |
|
|
|
|
|
|
|
|
clf = joblib.load(model_file) |
|
|
|
|
|
|
|
|
print("TEST data:") |
|
|
y_pred_test = clf.predict(test_features) |
|
|
print(confusion_matrix(test_labels, y_pred_test)) |
|
|
print(classification_report(test_labels, y_pred_test, digits=6, target_names=["BE", "CA", "CH" ,"FR"])) |
|
|
|
|
|
|
|
|
|
|
|
print("VAL data:") |
|
|
y_pred_val = clf.predict(val_features) |
|
|
print(confusion_matrix(val_labels, y_pred_val)) |
|
|
print(classification_report(val_labels, y_pred_val, digits=6, target_names=["BE", "CA", "CH" ,"FR"])) |
|
|
|
|
|
|
|
|
writePredictions(y_pred_test, os.path.join(".", "svm_preds_test.csv")) |
|
|
writePredictions(y_pred_val, os.path.join(".", "svm_preds_val.csv")) |
|
|
|
|
|
|