operator name
stringclasses
180 values
used in model
stringclasses
155 values
args
stringlengths
19
5.24k
aten.pow.Tensor_Scalar
HuggingFace/GPT2ForSequenceClassification
((T([4, 1024, 3072], f16), 2.0), {})
aten.pow.Tensor_Scalar
HuggingFace/GPT2ForSequenceClassification
((T([4, 1024, 3072], f16), 3.0), {})
aten.pow.Tensor_Scalar
TorchBench/hf_GPT2
((T([4, 512, 3072], f16), 2.0), {})
aten.pow.Tensor_Scalar
TorchBench/hf_GPT2
((T([4, 512, 3072], f16), 3.0), {})
aten.pow.Tensor_Scalar
HuggingFace/DebertaForMaskedLM
((T([4, 512, 768], f32), 1.0), {})
aten.pow.Tensor_Scalar
HuggingFace/DebertaForQuestionAnswering
((T([4, 512, 768], f32), 1.0), {})
aten.pow.Tensor_Scalar
HuggingFace/DebertaForMaskedLM
((T([4, 512, 768], f32), 2), {})
aten.pow.Tensor_Scalar
HuggingFace/DebertaForQuestionAnswering
((T([4, 512, 768], f32), 2), {})
aten.pow.Tensor_Scalar
TorchBench/fastNLP_Bert
((T([6, 476, 3072], f16), 2), {})
aten.pow.Tensor_Scalar
TorchBench/hf_Albert
((T([8, 512, 128], f16), 2.0), {})
aten.pow.Tensor_Scalar
TorchBench/hf_Albert
((T([8, 512, 128], f16), 3.0), {})
aten.pow.Tensor_Scalar
TorchBench/hf_Albert
((T([8, 512, 3072], f16), 2.0), {})
aten.pow.Tensor_Scalar
TorchBench/hf_Albert
((T([8, 512, 3072], f16), 3.0), {})
aten.reciprocal.default
HuggingFace/XLNetLMHeadModel
((T([512], f32),), {})
aten.reciprocal.default
TorchBench/vision_maskrcnn
((T([], f32),), {})
aten.reflection_pad2d.default
TorchBench/pytorch_CycleGAN_and_pix2pix
((T([1, 256, 64, 64], f16), [1, 1, 1, 1]), {})
aten.reflection_pad2d.default
TorchBench/pytorch_CycleGAN_and_pix2pix
((T([1, 3, 256, 256], f16), [3, 3, 3, 3]), {})
aten.reflection_pad2d.default
TorchBench/pytorch_CycleGAN_and_pix2pix
((T([1, 64, 256, 256], f16), [3, 3, 3, 3]), {})
aten.reflection_pad2d.default
TorchBench/Background_Matting
((T([3, 1, 512, 512], f16), [3, 3, 3, 3]), {})
aten.reflection_pad2d.default
TorchBench/Background_Matting
((T([3, 256, 128, 128], f16), [1, 1, 1, 1]), {})
aten.reflection_pad2d.default
TorchBench/Background_Matting
((T([3, 3, 512, 512], f16), [3, 3, 3, 3]), {})
aten.reflection_pad2d.default
TorchBench/Background_Matting
((T([3, 4, 512, 512], f16), [3, 3, 3, 3]), {})
aten.reflection_pad2d.default
TorchBench/Background_Matting
((T([3, 64, 512, 512], f16), [3, 3, 3, 3]), {})
aten.reflection_pad2d_backward.default
TorchBench/pytorch_CycleGAN_and_pix2pix
((T([1, 256, 66, 66], f16), T([1, 256, 64, 64], f16), [1, 1, 1, 1]), {})
aten.reflection_pad2d_backward.default
TorchBench/pytorch_CycleGAN_and_pix2pix
((T([1, 64, 262, 262], f16), T([1, 64, 256, 256], f16), [3, 3, 3, 3]), {})
aten.reflection_pad2d_backward.default
TorchBench/Background_Matting
((T([3, 256, 130, 130], f16), T([3, 256, 128, 128], f16), [1, 1, 1, 1]), {})
aten.reflection_pad2d_backward.default
TorchBench/Background_Matting
((T([3, 64, 518, 518], f16), T([3, 64, 512, 512], f16), [3, 3, 3, 3]), {})
aten.relu.default
TorchBench/vision_maskrcnn
((T([0, 1024], f16),), {})
aten.relu.default
TorchBench/speech_transformer
((T([10, 204, 2048], f16),), {})
aten.relu.default
TorchBench/speech_transformer
((T([10, 22, 2048], f16),), {})
aten.relu.default
TorchBench/fambench_dlrm
((T([1024, 1500], f16),), {})
aten.relu.default
TorchBench/fambench_dlrm
((T([1024, 192], f16),), {})
aten.relu.default
TorchBench/fambench_dlrm
((T([1024, 4000], f16),), {})
aten.relu.default
TIMM/hrnet_w18
((T([128, 144, 7, 7], f16),), {})
aten.relu.default
TIMM/regnety_002
((T([128, 152, 14, 14], f16),), {})
aten.relu.default
TIMM/hrnet_w18
((T([128, 18, 14, 14], f16),), {})
aten.relu.default
TIMM/hrnet_w18
((T([128, 18, 28, 28], f16),), {})
aten.relu.default
TIMM/hrnet_w18
((T([128, 18, 56, 56], f16),), {})
aten.relu.default
TIMM/regnety_002
((T([128, 24, 56, 56], f16),), {})
aten.relu.default
TIMM/hrnet_w18
((T([128, 36, 14, 14], f16),), {})
aten.relu.default
TIMM/hrnet_w18
((T([128, 36, 28, 28], f16),), {})
aten.relu.default
TIMM/regnety_002
((T([128, 368, 7, 7], f16),), {})
aten.relu.default
TIMM/regnety_002
((T([128, 56, 28, 28], f16),), {})
aten.relu.default
TIMM/hrnet_w18
((T([128, 72, 14, 14], f16),), {})
aten.relu.default
TIMM/nasnetalarge
((T([16, 1008, 42, 42], f16),), {})
aten.relu.default
TIMM/pnasnet5large
((T([16, 108, 42, 42], f16),), {})
aten.relu.default
TIMM/pnasnet5large
((T([16, 108, 83, 83], f16),), {})
aten.relu.default
TIMM/pnasnet5large
((T([16, 1080, 42, 42], f16),), {})
aten.relu.default
HuggingFace/MobileBertForMaskedLM
((T([16, 128, 512], f16),), {})
aten.relu.default
TIMM/nasnetalarge
((T([16, 1344, 21, 21], f16),), {})
aten.relu.default
TIMM/nasnetalarge
((T([16, 168, 42, 42], f16),), {})
aten.relu.default
TIMM/nasnetalarge
((T([16, 168, 83, 83], f16),), {})
aten.relu.default
TIMM/nasnetalarge
((T([16, 2016, 21, 21], f16),), {})
aten.relu.default
TIMM/pnasnet5large
((T([16, 216, 42, 42], f16),), {})
aten.relu.default
TIMM/pnasnet5large
((T([16, 2160, 21, 21], f16),), {})
aten.relu.default
TIMM/nasnetalarge
((T([16, 2688, 11, 11], f16),), {})
aten.relu.default
TIMM/pnasnet5large
((T([16, 270, 83, 83], f16),), {})
aten.relu.default
TIMM/nasnetalarge
((T([16, 336, 21, 21], f16),), {})
aten.relu.default
TIMM/nasnetalarge
((T([16, 336, 42, 42], f16),), {})
aten.relu.default
TIMM/nasnetalarge
((T([16, 4032, 11, 11], f16),), {})
aten.relu.default
TIMM/nasnetalarge
((T([16, 42, 165, 165], f16),), {})
aten.relu.default
TIMM/nasnetalarge
((T([16, 42, 83, 83], f16),), {})
aten.relu.default
TIMM/pnasnet5large
((T([16, 432, 21, 21], f16),), {})
aten.relu.default
TIMM/pnasnet5large
((T([16, 432, 42, 42], f16),), {})
aten.relu.default
TIMM/pnasnet5large
((T([16, 4320, 11, 11], f16),), {})
aten.relu.default
TIMM/pnasnet5large
((T([16, 54, 165, 165], f16),), {})
aten.relu.default
TIMM/pnasnet5large
((T([16, 54, 83, 83], f16),), {})
aten.relu.default
TIMM/pnasnet5large
((T([16, 540, 42, 42], f16),), {})
aten.relu.default
TIMM/nasnetalarge
((T([16, 672, 11, 11], f16),), {})
aten.relu.default
TIMM/nasnetalarge
((T([16, 672, 21, 21], f16),), {})
aten.relu.default
TIMM/nasnetalarge
((T([16, 84, 42, 42], f16),), {})
aten.relu.default
TIMM/nasnetalarge
((T([16, 84, 83, 83], f16),), {})
aten.relu.default
TIMM/pnasnet5large
((T([16, 864, 11, 11], f16),), {})
aten.relu.default
TIMM/pnasnet5large
((T([16, 864, 21, 21], f16),), {})
aten.relu.default
TIMM/nasnetalarge
((T([16, 96, 165, 165], f16),), {})
aten.relu.default
TIMM/pnasnet5large
((T([16, 96, 165, 165], f16),), {})
aten.relu.default
HuggingFace/M2M100ForConditionalGeneration
((T([2, 128, 4096], f16),), {})
aten.relu.default
TorchBench/attention_is_all_you_need_pytorch
((T([256, 31, 2048], f16),), {})
aten.relu.default
TorchBench/attention_is_all_you_need_pytorch
((T([256, 33, 2048], f16),), {})
aten.relu.default
TorchBench/timm_efficientdet
((T([2], f16),), {})
aten.relu.default
TorchBench/pytorch_struct
((T([30, 256], f16),), {})
aten.relu.default
TorchBench/mobilenet_v3_large
((T([32, 120, 1, 1], f16),), {})
aten.relu.default
HuggingFace/MobileBertForQuestionAnswering
((T([32, 128, 512], f16),), {})
aten.relu.default
TorchBench/mobilenet_v3_large
((T([32, 168, 1, 1], f16),), {})
aten.relu.default
TorchBench/timm_regnet
((T([32, 224, 56, 56], f16),), {})
aten.relu.default
TorchBench/timm_regnet
((T([32, 2240, 7, 7], f16),), {})
aten.relu.default
TorchBench/mobilenet_v3_large
((T([32, 24, 1, 1], f16),), {})
aten.relu.default
TorchBench/mobilenet_v3_large
((T([32, 240, 1, 1], f16),), {})
aten.relu.default
TIMM/gluon_xception65
((T([32, 256, 38, 38], f16),), {})
aten.relu.default
TorchBench/mobilenet_v3_large
((T([32, 32, 1, 1], f16),), {})
aten.relu.default
TorchBench/timm_regnet
((T([32, 448, 28, 28], f16),), {})
aten.relu.default
TIMM/gluon_xception65
((T([32, 728, 19, 19], f16),), {})
aten.relu.default
TIMM/convmixer_768_32
((T([32, 768, 32, 32], f16),), {})
aten.relu.default
TorchBench/timm_regnet
((T([32, 896, 14, 14], f16),), {})
aten.relu.default
TorchBench/timm_efficientdet
((T([3], f16),), {})
aten.relu.default
HuggingFace/OPTForCausalLM
((T([512, 3072], f16),), {})
aten.relu.default
HuggingFace/Speech2Text2ForCausalLM
((T([64, 128, 2048], f16),), {})
aten.relu.default
TorchBench/LearningToPaint
((T([96, 128, 16, 16], f16),), {})
aten.relu.default
TorchBench/LearningToPaint
((T([96, 256, 8, 8], f16),), {})
aten.relu.default
TorchBench/LearningToPaint
((T([96, 512, 4, 4], f16),), {})