|
|
--- |
|
|
license: gpl-3.0 |
|
|
tags: |
|
|
- biology |
|
|
pretty_name: ProtHGT Knowledge Graph Data & Pretrained Checkpoints |
|
|
--- |
|
|
|
|
|
# ProtHGT Knowledge Graph Data & Pretrained Checkpoints |
|
|
This repository provides the **knowledge graph (KG) `.pt` files** and **pretrained model checkpoints** used in **ProtHGT: Heterogeneous Graph Transformers for Automated Protein Function Prediction Using Biological Knowledge Graphs and Language Models**. |
|
|
- **Code (training & prediction)**: https://github.com/HUBioDataLab/ProtHGT |
|
|
|
|
|
--- |
|
|
|
|
|
## What’s Inside |
|
|
|
|
|
### data/ |
|
|
PyTorch Geometric-compatible KG files: |
|
|
- Full KG file (e.g., `prothgt-kg.pt`) |
|
|
- Train/validation/test splits (e.g., `prothgt-*-graph.pt`) |
|
|
- Alternative KG versions under `alternative_protein_embeddings/` (e.g., `esm2/`, `prott5/`), where the protein node features differ by embedding type. |
|
|
|
|
|
**Available Files** |
|
|
``` |
|
|
├── prothgt-kg.pt # The default full knowledge graph containing TAPE embeddings as the initial protein representations. |
|
|
├── prothgt-train-graph.pt # Training set (80% of the default full KG). |
|
|
├── prothgt-val-graph.pt # Validation set (10% of the default full KG). |
|
|
├── prothgt-test-graph.pt # Test set (10% of the default full KG). |
|
|
└── alternative_protein_embeddings/ # Contains alternative KGs with different protein representations. |
|
|
├──apaac/ |
|
|
│ └── ... |
|
|
├──esm2/ |
|
|
│ └── ... |
|
|
└──prott5/ |
|
|
└── ... |
|
|
``` |
|
|
|
|
|
|
|
|
### models/ |
|
|
Pretrained ProtHGT models (`.pt`). Models are provided: |
|
|
- per GO sub-ontology (e.g., Molecular Function / Biological Process / Cellular Component) |
|
|
- per protein embedding type (default vs `esm2` / `prott5` / etc.) |
|
|
|
|
|
**Important:** Use a model checkpoint that matches the KG embedding variant you are using. |
|
|
|
|
|
**Available Files** |
|
|
``` |
|
|
├── prothgt-model-molecular-function.pt # Pretrained ProtHGT checkpoint for Molecular Function (default/TAPE-based KG). |
|
|
├── prothgt-model-biological-process.pt # Pretrained ProtHGT checkpoint for Biological Process (default/TAPE-based KG). |
|
|
├── prothgt-model-cellular-component.pt # Pretrained ProtHGT checkpoint for Cellular Component (default/TAPE-based KG). |
|
|
└── alternative_protein_embeddings/ # Models trained with alternative protein representations. |
|
|
├── esm2/ |
|
|
│ └── ... |
|
|
└── prott5/ |
|
|
└── ... |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
### How to Use (Training & Prediction) |
|
|
To train or run inference, follow the instructions in the GitHub repository: https://github.com/HUBioDataLab/ProtHGT |
|
|
|
|
|
Key scripts: |
|
|
- `train.py` — trains ProtHGT using the provided KG splits |
|
|
- `predict.py` — runs inference using pretrained checkpoints |
|
|
|
|
|
--- |
|
|
|
|
|
### Citation |
|
|
Please refer to our preprint for more information. If you use the ProtHGT method or the datasets provided in this repository, please cite this paper: |
|
|
Ulusoy, E., & Dogan, T. (2025). ProtHGT: Heterogeneous Graph Transformers for Automated Protein Function Prediction Using Biological Knowledge Graphs and Language Models (p. 2025.04.19.649272). bioRxiv. [Link](https://doi.org/10.1101/2025.04.19.649272) |
|
|
|
|
|
--- |
|
|
|
|
|
### Licensing |
|
|
Copyright (C) 2025 HUBioDataLab |
|
|
|
|
|
This dataset is released under GPL-3.0. |