|
|
--- |
|
|
license: cc-by-4.0 |
|
|
task_categories: |
|
|
- text-to-speech |
|
|
- automatic-speech-recognition |
|
|
- audio-to-audio |
|
|
language: |
|
|
- ur |
|
|
tags: |
|
|
- Urdu |
|
|
- TTS |
|
|
- LargeScaleDataset |
|
|
pretty_name: Munch |
|
|
--- |
|
|
# Munch - Large-Scale Urdu Text-to-Speech Dataset |
|
|
|
|
|
[](https://huggingface.co/datasets/humair025/Munch) |
|
|
[](https://huggingface.co/datasets/humair025/hashed_data) |
|
|
[]() |
|
|
[]() |
|
|
[]() |
|
|
|
|
|
## π Dataset Description |
|
|
|
|
|
**Munch** is a large-scale Urdu Text-to-Speech (TTS) dataset containing high-quality audio recordings paired with Urdu text transcripts. The dataset features multiple voice variations and natural pronunciation patterns suitable for training and evaluating Urdu TTS models. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
### Rough Assumption : |
|
|
|
|
|
4.17 million audio clips, if each 20 seconds long, total about 11,500+ hours of audio. |
|
|
|
|
|
|
|
|
### Key Features |
|
|
|
|
|
- π€ **13 Different Voices**: alloy, echo, fable, onyx, nova, shimmer, coral, verse, ballad, ash, sage, amuch, dan |
|
|
- π£οΈ **Natural Urdu Pronunciation**: Proper handling of Urdu script, punctuation, and intonation |
|
|
- π **Large Scale**: 4,167,500 audio-text pairs |
|
|
- π΅ **High Quality Audio**: PCM16 format, 22.05 kHz sample rate |
|
|
- πΎ **Efficient Storage**: Parquet format with compression |
|
|
- π **Lightweight Index Available**: [Hashed index](https://huggingface.co/datasets/humair025/hashed_data) for exploration without downloading full dataset |
|
|
|
|
|
### Dataset Statistics |
|
|
|
|
|
| Metric | Value | |
|
|
|--------|-------| |
|
|
| Total Size | 1.27 TB | |
|
|
| Total Rows | 4,167,500 | |
|
|
| Number of Files | ~8,300 parquet files | |
|
|
| Audio Format | PCM16 (raw audio bytes) | |
|
|
| Sample Rate | 22,050 Hz | |
|
|
| Bit Depth | 16-bit signed integer | |
|
|
| Text Language | Urdu (with occasional mixed language) | |
|
|
| Voice Count | 13 unique voices | |
|
|
| Avg Audio Size | ~50 KB to 5MB per sample | |
|
|
| Avg Duration | ~3-5 seconds per sample | |
|
|
| Total Duration | ~7,500-15,800 hours of audio | |
|
|
|
|
|
### π Companion Dataset |
|
|
|
|
|
For efficient exploration without downloading the full 1.27 TB dataset, use the [**Munch Hashed Index**](https://huggingface.co/datasets/humair025/hashed_data): |
|
|
- π Contains all metadata + SHA-256 hashes of audio |
|
|
- πΎ Only ~1 GB (99.92% smaller) |
|
|
- β‘ Search 4.17M records in seconds |
|
|
- π― Selectively download only what you need |
|
|
|
|
|
### Related Datasets |
|
|
|
|
|
- **This Dataset (v1)**: [humair025/Munch](https://huggingface.co/datasets/humair025/Munch) - 1.27 TB, 4.17M samples |
|
|
- **Munch-1 (v2)**: [humair025/munch-1](https://huggingface.co/datasets/humair025/munch-1) - 3.28 TB, 3.86M samples (newer version) |
|
|
- **Hashed Index (v1)**: [humair025/hashed_data](https://huggingface.co/datasets/humair025/hashed_data) - Index for this dataset |
|
|
- **Hashed Index (v2)**: [humair025/hashed_data_munch_1](https://huggingface.co/datasets/humair025/hashed_data_munch_1) - Index for Munch-1 |
|
|
|
|
|
--- |
|
|
|
|
|
## π Quick Start |
|
|
|
|
|
### Installation |
|
|
|
|
|
```bash |
|
|
pip install datasets pandas numpy scipy |
|
|
``` |
|
|
|
|
|
### Basic Usage |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
import numpy as np |
|
|
import io |
|
|
from scipy.io import wavfile |
|
|
import IPython.display as ipd |
|
|
|
|
|
# Load a specific file |
|
|
ds = load_dataset( |
|
|
"humair025/Munch", |
|
|
data_files="tts_data_20251203_125841_0a26c418.parquet", |
|
|
split="train" |
|
|
) |
|
|
|
|
|
# Helper function to convert PCM16 bytes to WAV |
|
|
def pcm16_bytes_to_wav(pcm_bytes, sample_rate=22050): |
|
|
audio_array = np.frombuffer(pcm_bytes, dtype=np.int16) |
|
|
wav_io = io.BytesIO() |
|
|
wavfile.write(wav_io, sample_rate, audio_array) |
|
|
wav_io.seek(0) |
|
|
return wav_io |
|
|
|
|
|
# Play first audio sample |
|
|
row = ds[0] |
|
|
wav_io = pcm16_bytes_to_wav(row['audio_bytes']) |
|
|
ipd.display(ipd.Audio(wav_io, rate=22050)) |
|
|
|
|
|
print(f"Text: {row['text']}") |
|
|
print(f"Voice: {row['voice']}") |
|
|
``` |
|
|
|
|
|
### Efficient Exploration (Recommended) |
|
|
|
|
|
Instead of downloading the full 1.27 TB dataset, start with the hashed index: |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
import pandas as pd |
|
|
|
|
|
# Load the lightweight index (~1 GB) |
|
|
index_ds = load_dataset("humair025/hashed_data", split="train") |
|
|
index_df = pd.DataFrame(index_ds) |
|
|
|
|
|
# Explore the dataset |
|
|
print(f"Total samples: {len(index_df)}") |
|
|
print(f"Voices: {index_df['voice'].unique()}") |
|
|
print(f"Voice distribution:\n{index_df['voice'].value_counts()}") |
|
|
|
|
|
# Find specific samples |
|
|
ash_samples = index_df[index_df['voice'] == 'ash'] |
|
|
short_audio = index_df[index_df['audio_size_bytes'] < 40000] |
|
|
|
|
|
# Download only what you need |
|
|
files_needed = ash_samples['parquet_file_name'].unique()[:10] |
|
|
ds = load_dataset( |
|
|
"humair025/Munch", |
|
|
data_files=list(files_needed), |
|
|
split="train" |
|
|
) |
|
|
``` |
|
|
|
|
|
### Load Multiple Files |
|
|
|
|
|
```python |
|
|
# Load first 10 files |
|
|
ds = load_dataset( |
|
|
"humair025/Munch", |
|
|
data_files="tts_data_20251203_*.parquet", # Wildcard pattern |
|
|
split="train" |
|
|
) |
|
|
|
|
|
print(f"Total samples: {len(ds)}") |
|
|
``` |
|
|
|
|
|
### Batch Processing |
|
|
|
|
|
```python |
|
|
from huggingface_hub import HfApi |
|
|
|
|
|
# Get all parquet files |
|
|
api = HfApi() |
|
|
files = api.list_repo_files(repo_id="humair025/Munch", repo_type="dataset") |
|
|
parquet_files = [f for f in files if f.endswith('.parquet')] |
|
|
|
|
|
print(f"Total files: {len(parquet_files)}") |
|
|
|
|
|
# Load first 20 files |
|
|
batch = parquet_files[:20] |
|
|
ds = load_dataset( |
|
|
"humair025/Munch", |
|
|
data_files=batch, |
|
|
split="train" |
|
|
) |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## π Dataset Structure |
|
|
|
|
|
### Data Fields |
|
|
|
|
|
Each row in the dataset contains: |
|
|
|
|
|
| Field | Type | Description | |
|
|
|-------|------|-------------| |
|
|
| `id` | int | Paragraph ID (sequential) | |
|
|
| `text` | string | Original Urdu text | |
|
|
| `transcript` | string | TTS transcript (may differ slightly from input) | |
|
|
| `voice` | string | Voice name used (e.g., "ash", "sage", "coral") | |
|
|
| `audio_bytes` | bytes | Raw PCM16 audio data | |
|
|
| `timestamp` | string | ISO format timestamp of generation (nullable) | |
|
|
| `error` | string | Error message if generation failed (nullable) | |
|
|
|
|
|
### Example Row |
|
|
|
|
|
```python |
|
|
{ |
|
|
'id': 42, |
|
|
'text': 'ΫΫ Ψ§ΫΪ© ΩΩ
ΩΩΫ Ω
ΨͺΩ ΫΫΫ', |
|
|
'transcript': 'ΫΫ Ψ§ΫΪ© ΩΩ
ΩΩΫ Ω
ΨͺΩ ΫΫΫ', |
|
|
'voice': 'ash', |
|
|
'audio_bytes': b'\x00\x01...', # PCM16 bytes |
|
|
'timestamp': '2025-12-03T13:03:14.123456', |
|
|
'error': None |
|
|
} |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## π― Use Cases |
|
|
|
|
|
### 1. **TTS Model Training** |
|
|
Train Urdu text-to-speech models with diverse voice samples: |
|
|
- Fine-tune existing TTS models |
|
|
- Train voice cloning systems |
|
|
- Develop multi-speaker TTS |
|
|
- Create voice conversion models |
|
|
|
|
|
### 2. **Speech Recognition** |
|
|
Develop Urdu ASR systems: |
|
|
- Train speech-to-text models |
|
|
- Evaluate transcription accuracy |
|
|
- Research Urdu phonetics |
|
|
- Build pronunciation dictionaries |
|
|
|
|
|
### 3. **Voice Research** |
|
|
Study voice characteristics and patterns: |
|
|
- Analyze voice similarity |
|
|
- Research pronunciation patterns |
|
|
- Study Urdu phonetics and prosody |
|
|
- Compare voice quality metrics |
|
|
|
|
|
### 4. **Audio Processing** |
|
|
Develop audio processing pipelines: |
|
|
- Audio enhancement |
|
|
- Noise reduction |
|
|
- Speech synthesis evaluation |
|
|
- Audio quality assessment |
|
|
|
|
|
### 5. **Linguistic Analysis** |
|
|
Explore linguistic patterns: |
|
|
- Text analysis and corpus linguistics |
|
|
- Punctuation usage patterns |
|
|
- Sentence structure analysis |
|
|
- Code-switching research (Urdu-English) |
|
|
|
|
|
--- |
|
|
|
|
|
## π§ Advanced Usage |
|
|
|
|
|
### Voice Distribution Analysis |
|
|
|
|
|
```python |
|
|
import pandas as pd |
|
|
from collections import Counter |
|
|
|
|
|
# Using the hashed index (recommended) |
|
|
index_ds = load_dataset("humair025/hashed_data", split="train") |
|
|
index_df = pd.DataFrame(index_ds) |
|
|
|
|
|
# Count voice usage |
|
|
voice_counts = index_df['voice'].value_counts() |
|
|
print("Voice Distribution:") |
|
|
for voice, count in voice_counts.items(): |
|
|
percentage = (count / len(index_df)) * 100 |
|
|
print(f" {voice}: {count:,} samples ({percentage:.2f}%)") |
|
|
``` |
|
|
|
|
|
### Audio Length Analysis |
|
|
|
|
|
```python |
|
|
# Using the hashed index |
|
|
avg_size = index_df['audio_size_bytes'].mean() |
|
|
avg_duration = (avg_size / 2) / 22050 # bytes to seconds |
|
|
|
|
|
print(f"Average audio size: {avg_size/1024:.2f} KB") |
|
|
print(f"Average duration: {avg_duration:.2f} seconds") |
|
|
|
|
|
# Duration distribution |
|
|
durations = (index_df['audio_size_bytes'] / 2) / 22050 |
|
|
print(f"Min duration: {durations.min():.2f}s") |
|
|
print(f"Max duration: {durations.max():.2f}s") |
|
|
print(f"Median duration: {durations.median():.2f}s") |
|
|
``` |
|
|
|
|
|
### Text Statistics |
|
|
|
|
|
```python |
|
|
# Text length analysis |
|
|
text_lengths = index_df['text'].str.len() |
|
|
word_counts = index_df['text'].str.split().str.len() |
|
|
|
|
|
print(f"Average characters: {text_lengths.mean():.0f}") |
|
|
print(f"Average words: {word_counts.mean():.0f}") |
|
|
print(f"Longest text: {text_lengths.max()} characters") |
|
|
``` |
|
|
|
|
|
### Duplicate Detection |
|
|
|
|
|
```python |
|
|
# Find duplicate audio using hashes |
|
|
duplicates = index_df[index_df.duplicated(subset=['audio_bytes_hash'], keep=False)] |
|
|
|
|
|
if len(duplicates) > 0: |
|
|
print(f"Found {len(duplicates):,} duplicate rows") |
|
|
print(f"Unique audio: {index_df['audio_bytes_hash'].nunique():,}") |
|
|
redundancy = (1 - index_df['audio_bytes_hash'].nunique()/len(index_df)) * 100 |
|
|
print(f"Redundancy: {redundancy:.2f}%") |
|
|
else: |
|
|
print("No duplicates found!") |
|
|
``` |
|
|
|
|
|
### Export to WAV Files |
|
|
|
|
|
```python |
|
|
import os |
|
|
from tqdm import tqdm |
|
|
|
|
|
# Load specific samples |
|
|
ds = load_dataset( |
|
|
"humair025/Munch", |
|
|
data_files="tts_data_20251203_*.parquet", |
|
|
split="train" |
|
|
) |
|
|
|
|
|
os.makedirs("audio_files", exist_ok=True) |
|
|
|
|
|
for i, row in enumerate(tqdm(ds[:100])): # First 100 samples |
|
|
wav_io = pcm16_bytes_to_wav(row['audio_bytes']) |
|
|
filename = f"audio_files/sample_{i:04d}_{row['voice']}.wav" |
|
|
with open(filename, 'wb') as f: |
|
|
f.write(wav_io.read()) |
|
|
``` |
|
|
|
|
|
### Selective Download by Voice |
|
|
|
|
|
```python |
|
|
# Using hashed index to find files |
|
|
voice_of_interest = 'ash' |
|
|
ash_files = index_df[index_df['voice'] == voice_of_interest]['parquet_file_name'].unique() |
|
|
|
|
|
print(f"Files containing '{voice_of_interest}' voice: {len(ash_files)}") |
|
|
|
|
|
# Download first 10 files with ash voice |
|
|
ds = load_dataset( |
|
|
"humair025/Munch", |
|
|
data_files=list(ash_files[:10]), |
|
|
split="train" |
|
|
) |
|
|
|
|
|
print(f"Loaded {len(ds)} samples") |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## π Dataset Creation |
|
|
|
|
|
This dataset was generated using a high-performance parallel TTS pipeline with the following characteristics: |
|
|
|
|
|
### Generation Pipeline |
|
|
|
|
|
- **Concurrent Processing**: 10-20 parallel workers |
|
|
- **Voice Rotation**: Sequential rotation through 13 voices |
|
|
- **Quality Control**: Automatic retry with exponential backoff |
|
|
- **Fault Tolerance**: Checkpoint-based resumption |
|
|
- **Smart Batching**: Efficient 500-row batches |
|
|
- **API**: OpenAI-compatible TTS endpoints |
|
|
|
|
|
### Pipeline Features |
|
|
|
|
|
- β
Natural Urdu pronunciation with proper intonation |
|
|
- β
Punctuation-aware pausing: |
|
|
- `Ψ` (question mark): 400ms pause with higher pitch |
|
|
- `!` (exclamation): 300ms pause with emphasis |
|
|
- `Ψ` (comma): 500ms pause |
|
|
- `Ϋ` (full stop): 1000ms pause |
|
|
- β
Mixed-language support for technical terms |
|
|
- β
Variable pacing for natural flow |
|
|
- β
Error handling and logging |
|
|
|
|
|
--- |
|
|
|
|
|
## β οΈ Important Notes |
|
|
|
|
|
### Audio Format |
|
|
- Audio is stored as **raw PCM16 bytes** (not WAV files) |
|
|
- Must be converted before playback (see examples above) |
|
|
- Sample rate: 22,050 Hz |
|
|
- Bit depth: 16-bit signed integer |
|
|
- Channels: Mono (1 channel) |
|
|
|
|
|
### Large Dataset Considerations |
|
|
- πΎ **Size**: 1.27 TB total - download selectively |
|
|
- π¦ **Files**: ~8,300 individual parquet files |
|
|
- β‘ **Streaming**: Recommended for full dataset access |
|
|
- π **Batching**: Load files in batches to manage memory |
|
|
- π **Index First**: Use [hashed index](https://huggingface.co/datasets/humair025/hashed_data) to explore before downloading |
|
|
|
|
|
### Recommended Workflow |
|
|
|
|
|
1. **Explore**: Load the [hashed index](https://huggingface.co/datasets/humair025/hashed_data) (~1 GB) |
|
|
2. **Filter**: Find samples matching your criteria |
|
|
3. **Download**: Selectively download only needed parquet files |
|
|
4. **Process**: Work with manageable subsets |
|
|
|
|
|
### Potential Data Issues |
|
|
|
|
|
β οΈ **Duplicates**: This dataset may contain duplicate audio samples. Use the hashed index for deduplication: |
|
|
|
|
|
```python |
|
|
# Get unique samples only |
|
|
unique_df = index_df.drop_duplicates(subset=['audio_bytes_hash'], keep='first') |
|
|
unique_files = unique_df['parquet_file_name'].unique() |
|
|
``` |
|
|
|
|
|
β οΈ **Quality Variance**: Some samples may have: |
|
|
- Low volume or clipping |
|
|
- Mispronunciations (especially for rare words) |
|
|
- Background noise |
|
|
- Transcription differences from input text |
|
|
|
|
|
--- |
|
|
|
|
|
## π Performance Tips |
|
|
|
|
|
### Memory Management |
|
|
|
|
|
```python |
|
|
# DON'T: Load entire dataset at once |
|
|
# ds = load_dataset("humair025/Munch", split="train") # 1.27 TB! |
|
|
|
|
|
# DO: Use streaming mode |
|
|
ds = load_dataset( |
|
|
"humair025/Munch", |
|
|
data_files="tts_data_20251203_*.parquet", |
|
|
split="train", |
|
|
streaming=True # Stream data instead of loading all |
|
|
) |
|
|
|
|
|
# Process in batches |
|
|
for i, batch in enumerate(ds.iter(batch_size=100)): |
|
|
# Process 100 samples at a time |
|
|
if i >= 10: # Process only first 1000 samples |
|
|
break |
|
|
``` |
|
|
|
|
|
### Efficient File Selection |
|
|
|
|
|
```python |
|
|
# Select specific date range |
|
|
ds = load_dataset( |
|
|
"humair025/Munch", |
|
|
data_files="tts_data_20251203_*.parquet", # Only Dec 3rd files |
|
|
split="train" |
|
|
) |
|
|
|
|
|
# Or specific time range |
|
|
ds = load_dataset( |
|
|
"humair025/Munch", |
|
|
data_files="tts_data_20251203_1303*.parquet", # Around 13:03 |
|
|
split="train" |
|
|
) |
|
|
|
|
|
# Or use the index to find specific files |
|
|
target_files = index_df[index_df['voice'] == 'ash']['parquet_file_name'].unique()[:5] |
|
|
ds = load_dataset("humair025/Munch", data_files=list(target_files), split="train") |
|
|
``` |
|
|
|
|
|
### Storage Optimization |
|
|
|
|
|
```python |
|
|
# If storage is limited, consider: |
|
|
# 1. Download only specific voices |
|
|
# 2. Download in batches and process incrementally |
|
|
# 3. Use the hashed index for metadata-only analysis |
|
|
# 4. Delete processed files after feature extraction |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## π Citation |
|
|
|
|
|
If you use this dataset in your research, please cite: |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
```bibtex |
|
|
@dataset{munch_urdu_tts_2025, |
|
|
title={Munch: Large-Scale Urdu Text-to-Speech Dataset}, |
|
|
author={Munir, Humair}, |
|
|
year={2025}, |
|
|
publisher={Hugging Face}, |
|
|
howpublished={\url{https://huggingface.co/datasets/humair025/Munch}}, |
|
|
note={4.17M audio-text pairs across 13 voices} |
|
|
} |
|
|
``` |
|
|
|
|
|
### APA Format |
|
|
|
|
|
``` |
|
|
Munir, H. (2025). Munch: Large-Scale Urdu Text-to-Speech Dataset [Dataset]. |
|
|
Hugging Face. https://huggingface.co/datasets/humair025/Munch |
|
|
``` |
|
|
|
|
|
### MLA Format |
|
|
|
|
|
``` |
|
|
Munir, Humair. "Munch: Large-Scale Urdu Text-to-Speech Dataset." Hugging Face, 2025, |
|
|
https://huggingface.co/datasets/humair025/Munch. |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## π€ Contributing |
|
|
|
|
|
Issues, suggestions, and contributions are welcome! Please: |
|
|
- π Report data quality issues |
|
|
- π‘ Suggest improvements |
|
|
- π Share your use cases and research |
|
|
- π§ Contribute analysis scripts or tools |
|
|
|
|
|
## π License |
|
|
|
|
|
This dataset is released under the **Creative Commons Attribution 4.0 International (CC-BY-4.0)** license. |
|
|
|
|
|
You are free to: |
|
|
- β
**Share** β copy and redistribute the material in any medium or format |
|
|
- β
**Adapt** β remix, transform, and build upon the material for any purpose |
|
|
- β
**Commercial use** β use the dataset for commercial purposes |
|
|
|
|
|
Under the following terms: |
|
|
- π **Attribution** β You must give appropriate credit, provide a link to the license, and indicate if changes were made |
|
|
|
|
|
--- |
|
|
|
|
|
## π Important Links |
|
|
|
|
|
- π§ [**This Dataset (Full Audio)**](https://huggingface.co/datasets/humair025/Munch) - 1.27 TB |
|
|
- π [**Hashed Index**](https://huggingface.co/datasets/humair025/hashed_data) - ~1 GB metadata + hashes |
|
|
- π [**Munch-1 (Newer Version)**](https://huggingface.co/datasets/humair025/munch-1) - 3.28 TB, 3.86M samples |
|
|
- π¬ [**Discussions**](https://huggingface.co/datasets/humair025/Munch/discussions) - Ask questions, share research |
|
|
- π [**Report Issues**](https://huggingface.co/datasets/humair025/Munch/discussions) - Data quality problems |
|
|
|
|
|
--- |
|
|
|
|
|
## π Acknowledgments |
|
|
|
|
|
- **TTS Generation**: OpenAI-compatible API endpoints |
|
|
- **Voices**: 13 high-quality voice models (alloy, echo, fable, onyx, nova, shimmer, coral, verse, ballad, ash, sage, amuch, dan) |
|
|
- **Infrastructure**: HuggingFace Datasets platform |
|
|
- **Tools**: Python, datasets, pandas, numpy, scipy |
|
|
|
|
|
--- |
|
|
|
|
|
## π Usage Statistics |
|
|
|
|
|
Help us understand how the dataset is used: |
|
|
- Training TTS models |
|
|
- Speech recognition research |
|
|
- Voice cloning experiments |
|
|
- Linguistic analysis |
|
|
- Educational purposes |
|
|
- Other (please share in discussions!) |
|
|
|
|
|
--- |
|
|
|
|
|
## β‘ Quick Start Tips |
|
|
|
|
|
1. **First Time Users**: Start with the [hashed index](https://huggingface.co/datasets/humair025/hashed_data) (~1 GB) to explore the dataset |
|
|
2. **Download Smart**: Use the index to find specific samples, then download only those parquet files |
|
|
3. **Memory Matters**: Use streaming mode if working with large subsets |
|
|
4. **Deduplication**: Check for duplicates using audio hashes before training |
|
|
5. **Voice Selection**: Each voice has ~320k samples - choose based on your needs |
|
|
6. **Consider Munch-1**: A newer version with 3.86M samples is also available at [humair025/munch-1](https://huggingface.co/datasets/humair025/munch-1) |
|
|
|
|
|
--- |
|
|
|
|
|
**Note**: This is a large dataset (1.27 TB, 4.17M samples). Please download selectively based on your needs. Consider using the [hashed index](https://huggingface.co/datasets/humair025/hashed_data) for exploration and selective downloading. |
|
|
|
|
|
**Last Updated**: December 2025 |
|
|
|
|
|
**Status**: β
Complete - All ~8,300 files uploaded |
|
|
|
|
|
--- |
|
|
|
|
|
π‘ **Pro Tip**: Download the lightweight [hashed index](https://huggingface.co/datasets/humair025/hashed_data) first to explore the dataset, find duplicates, and identify exactly which files you need - then download only those specific parquet files from this dataset! |