|
|
--- |
|
|
dataset_info: |
|
|
features: |
|
|
- name: id |
|
|
dtype: uint32 |
|
|
- name: language |
|
|
dtype: string |
|
|
- name: url |
|
|
dtype: string |
|
|
- name: title |
|
|
dtype: string |
|
|
- name: text_markdown |
|
|
dtype: string |
|
|
- name: text_html |
|
|
dtype: string |
|
|
- name: author |
|
|
dtype: string |
|
|
- name: original_author |
|
|
dtype: string |
|
|
- name: original_url |
|
|
dtype: string |
|
|
- name: lead_html |
|
|
dtype: string |
|
|
- name: lead_markdown |
|
|
dtype: string |
|
|
- name: type |
|
|
dtype: string |
|
|
- name: time_published |
|
|
dtype: uint64 |
|
|
- name: statistics |
|
|
struct: |
|
|
- name: commentsCount |
|
|
dtype: uint32 |
|
|
- name: favoritesCount |
|
|
dtype: uint32 |
|
|
- name: readingCount |
|
|
dtype: uint32 |
|
|
- name: score |
|
|
dtype: int32 |
|
|
- name: votesCount |
|
|
dtype: int32 |
|
|
- name: votesCountPlus |
|
|
dtype: int32 |
|
|
- name: votesCountMinus |
|
|
dtype: int32 |
|
|
- name: labels |
|
|
sequence: string |
|
|
- name: hubs |
|
|
sequence: string |
|
|
- name: flows |
|
|
sequence: string |
|
|
- name: tags |
|
|
sequence: string |
|
|
- name: reading_time |
|
|
dtype: uint32 |
|
|
- name: format |
|
|
dtype: string |
|
|
- name: complexity |
|
|
dtype: string |
|
|
- name: comments |
|
|
sequence: |
|
|
- name: id |
|
|
dtype: uint64 |
|
|
- name: parent_id |
|
|
dtype: uint64 |
|
|
- name: level |
|
|
dtype: uint32 |
|
|
- name: time_published |
|
|
dtype: uint64 |
|
|
- name: score |
|
|
dtype: int32 |
|
|
- name: votes |
|
|
dtype: uint32 |
|
|
- name: message_html |
|
|
dtype: string |
|
|
- name: message_markdown |
|
|
dtype: string |
|
|
- name: author |
|
|
dtype: string |
|
|
- name: children |
|
|
sequence: uint64 |
|
|
splits: |
|
|
- name: train |
|
|
num_bytes: 19968161329 |
|
|
num_examples: 302049 |
|
|
download_size: 3485570346 |
|
|
dataset_size: 19968161329 |
|
|
task_categories: |
|
|
- text-generation |
|
|
language: |
|
|
- ru |
|
|
- en |
|
|
size_categories: |
|
|
- 100K<n<1M |
|
|
--- |
|
|
|
|
|
# Habr dataset |
|
|
|
|
|
## Table of Contents |
|
|
- [Table of Contents](#table-of-contents) |
|
|
- [Description](#description) |
|
|
- [Usage](#usage) |
|
|
- [Data Instances](#data-instances) |
|
|
- [Source Data](#source-data) |
|
|
- [Personal and Sensitive Information](#personal-and-sensitive-information) |
|
|
|
|
|
## Description |
|
|
|
|
|
**Summary:** Dataset of posts and comments from [habr.com](https://habr.com/ru/all/), a Russian collaborative blog about IT, computer science and anything related to the Internet. |
|
|
|
|
|
**Script:** [create_habr.py](https://github.com/IlyaGusev/rulm/blob/master/data_processing/create_habr.py) |
|
|
|
|
|
**Point of Contact:** [Ilya Gusev](ilya.gusev@phystech.edu) |
|
|
|
|
|
**Languages:** Russian, English, some programming code. |
|
|
|
|
|
|
|
|
## Usage |
|
|
|
|
|
Prerequisites: |
|
|
```bash |
|
|
pip install datasets zstandard jsonlines pysimdjson |
|
|
``` |
|
|
|
|
|
Dataset iteration: |
|
|
```python |
|
|
from datasets import load_dataset |
|
|
dataset = load_dataset('IlyaGusev/habr', split="train", streaming=True) |
|
|
for example in dataset: |
|
|
print(example["text_markdown"]) |
|
|
``` |
|
|
|
|
|
## Data Instances |
|
|
|
|
|
``` |
|
|
{ |
|
|
"id": 12730, |
|
|
"language": "ru", |
|
|
"url": "https://habr.com/ru/post/12730/", |
|
|
"text_markdown": "...", |
|
|
"text_html": "...", |
|
|
"lead_markdown": "...", |
|
|
"lead_html": "...", |
|
|
"type": "article", |
|
|
"labels": [], |
|
|
"original_author": null, |
|
|
"original_url": null, |
|
|
"time_published": 1185962380, |
|
|
"author": "...", |
|
|
"title": "Хочешь в университет — сделай презентацию", |
|
|
"statistics": { |
|
|
"commentsCount": 23, |
|
|
"favoritesCount": 1, |
|
|
"readingCount": 1542, |
|
|
"score": 7, |
|
|
"votesCount": 15, |
|
|
"votesCountPlus": 11, |
|
|
"votesCountMinus": 4 |
|
|
}, |
|
|
"hubs": [ |
|
|
"itcompanies" |
|
|
], |
|
|
"flows": [ |
|
|
"popsci" |
|
|
], |
|
|
"tags": [ |
|
|
"PowerPoint", |
|
|
"презентация", |
|
|
"абитуриенты", |
|
|
], |
|
|
"reading_time": 1, |
|
|
"format": null, |
|
|
"complexity": null, |
|
|
"comments": { |
|
|
"id": [11653537, 11653541], |
|
|
"parent_id": [null, 11653537], |
|
|
"level": [0, 1], |
|
|
"time_published": [1185963192, 1185967886], |
|
|
"score": [-1, 0], |
|
|
"votes": [1, 0], |
|
|
"message_html": ["...", "..."], |
|
|
"author": ["...", "..."], |
|
|
"children": [[11653541], []] |
|
|
} |
|
|
} |
|
|
``` |
|
|
|
|
|
You can use this little helper to unflatten sequences: |
|
|
|
|
|
```python |
|
|
def revert_flattening(records): |
|
|
fixed_records = [] |
|
|
for key, values in records.items(): |
|
|
if not fixed_records: |
|
|
fixed_records = [{} for _ in range(len(values))] |
|
|
for i, value in enumerate(values): |
|
|
fixed_records[i][key] = value |
|
|
return fixed_records |
|
|
``` |
|
|
|
|
|
The original JSONL is already unflattened. |
|
|
|
|
|
|
|
|
## Source Data |
|
|
|
|
|
* The data source is the [Habr](https://habr.com/) website. |
|
|
* API call example: [post 709430](https://habr.com/kek/v2/articles/709430). |
|
|
* Processing script is [here](https://github.com/IlyaGusev/rulm/blob/master/data_processing/create_habr.py). |
|
|
|
|
|
## Personal and Sensitive Information |
|
|
|
|
|
The dataset is not anonymized, so individuals' names can be found in the dataset. Information about the original authors is included in the dataset where possible. |
|
|
|