Create cache folder
#3
by
pbordesinstadeep
- opened
multi_omics_transcript_expression.py
CHANGED
|
@@ -125,17 +125,6 @@ LABELS_V2 = [
|
|
| 125 |
"Whole Blood",
|
| 126 |
]
|
| 127 |
|
| 128 |
-
# Add after LABELS_V2 definition
|
| 129 |
-
LABELS_LIGHT = [
|
| 130 |
-
"Adipose Tissue",
|
| 131 |
-
"Brain",
|
| 132 |
-
"Heart",
|
| 133 |
-
"Liver",
|
| 134 |
-
"Lung",
|
| 135 |
-
"Muscle",
|
| 136 |
-
"Pancreas",
|
| 137 |
-
"Skin",
|
| 138 |
-
]
|
| 139 |
|
| 140 |
class GenomicLRATaskHandler(ABC):
|
| 141 |
"""
|
|
@@ -213,7 +202,6 @@ class GenomicLRATaskHandler(ABC):
|
|
| 213 |
|
| 214 |
if not os.path.exists(file_complete_path):
|
| 215 |
if not os.path.exists(file_complete_path + ".gz"):
|
| 216 |
-
os.makedirs(os.path.dirname(file_complete_path), exist_ok=True)
|
| 217 |
with tqdm(
|
| 218 |
unit="B",
|
| 219 |
unit_scale=True,
|
|
@@ -243,28 +231,31 @@ class TranscriptExpressionHandler(GenomicLRATaskHandler):
|
|
| 243 |
sequence_length: int = DEFAULT_LENGTH,
|
| 244 |
filter_out_sequence_length: int = DEFAULT_FILTER_OUT_LENGTH,
|
| 245 |
expression_method: str = "read_counts_old",
|
| 246 |
-
light_version: bool = False,
|
| 247 |
**kwargs,
|
| 248 |
):
|
| 249 |
"""
|
| 250 |
-
Creates a new handler for the
|
| 251 |
Args:
|
| 252 |
sequence_length: Length of the sequence around the TSS_CAGE start site
|
| 253 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
"""
|
| 255 |
self.reference_genome = None
|
| 256 |
self.coordinate_csv_file = None
|
| 257 |
self.labels_csv_file = None
|
| 258 |
-
self.light_version = light_version
|
| 259 |
self.sequence_length = sequence_length
|
| 260 |
self.filter_out_sequence_length = filter_out_sequence_length
|
| 261 |
|
| 262 |
-
if
|
| 263 |
-
assert isinstance(
|
| 264 |
assert (
|
| 265 |
-
|
| 266 |
-
), f"{
|
| 267 |
-
assert isinstance(
|
| 268 |
|
| 269 |
def get_info(self, description: str) -> DatasetInfo:
|
| 270 |
"""
|
|
@@ -294,7 +285,9 @@ class TranscriptExpressionHandler(GenomicLRATaskHandler):
|
|
| 294 |
}
|
| 295 |
)
|
| 296 |
return datasets.DatasetInfo(
|
|
|
|
| 297 |
description=description,
|
|
|
|
| 298 |
features=features,
|
| 299 |
)
|
| 300 |
|
|
@@ -327,30 +320,31 @@ class TranscriptExpressionHandler(GenomicLRATaskHandler):
|
|
| 327 |
"""
|
| 328 |
df = pd.read_csv(self.df_csv_file)
|
| 329 |
df = df.loc[df["chr"] != "chrMT"]
|
| 330 |
-
|
| 331 |
-
# Use light version labels if specified
|
| 332 |
-
labels_name = LABELS_LIGHT if self.light_version else LABELS_V1
|
| 333 |
|
| 334 |
split_df = df.loc[df["split"] == split]
|
| 335 |
-
|
| 336 |
-
# For light version, take only a subset of the data
|
| 337 |
-
if self.light_version:
|
| 338 |
-
split_df = split_df.sample(n=min(1000, len(split_df)), random_state=42)
|
| 339 |
|
| 340 |
norm_values_df = pd.read_csv(self.normalization_values_csv_file)
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
|
| 355 |
key = 0
|
| 356 |
for idx, coordinates_row in split_df.iterrows():
|
|
@@ -362,7 +356,7 @@ class TranscriptExpressionHandler(GenomicLRATaskHandler):
|
|
| 362 |
start = coordinates_row["start"] - 1 # -1 since vcf coords are 1-based
|
| 363 |
|
| 364 |
chromosome = coordinates_row["chr"]
|
| 365 |
-
labels_row = coordinates_row[
|
| 366 |
padded_sequence = pad_sequence(
|
| 367 |
chromosome=self.reference_genome[chromosome],
|
| 368 |
start=start,
|
|
@@ -508,4 +502,4 @@ def pad_sequence(
|
|
| 508 |
|
| 509 |
if negative_strand:
|
| 510 |
return chromosome[start:end].reverse.complement.seq
|
| 511 |
-
return chromosome[start:end].seq
|
|
|
|
| 125 |
"Whole Blood",
|
| 126 |
]
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
class GenomicLRATaskHandler(ABC):
|
| 130 |
"""
|
|
|
|
| 202 |
|
| 203 |
if not os.path.exists(file_complete_path):
|
| 204 |
if not os.path.exists(file_complete_path + ".gz"):
|
|
|
|
| 205 |
with tqdm(
|
| 206 |
unit="B",
|
| 207 |
unit_scale=True,
|
|
|
|
| 231 |
sequence_length: int = DEFAULT_LENGTH,
|
| 232 |
filter_out_sequence_length: int = DEFAULT_FILTER_OUT_LENGTH,
|
| 233 |
expression_method: str = "read_counts_old",
|
|
|
|
| 234 |
**kwargs,
|
| 235 |
):
|
| 236 |
"""
|
| 237 |
+
Creates a new handler for the Transcrpt Expression Prediction Task.
|
| 238 |
Args:
|
| 239 |
sequence_length: Length of the sequence around the TSS_CAGE start site
|
| 240 |
+
Instance Vars:
|
| 241 |
+
reference_genome: The Fasta extracted reference genome.
|
| 242 |
+
coordinate_csv_file: The csv file that stores the coordinates and filename of the target
|
| 243 |
+
labels_csv_file: The csv file that stores the labels with one sample per row.
|
| 244 |
+
sequence_length: Sequence length for this handler.
|
| 245 |
+
counts.
|
| 246 |
"""
|
| 247 |
self.reference_genome = None
|
| 248 |
self.coordinate_csv_file = None
|
| 249 |
self.labels_csv_file = None
|
|
|
|
| 250 |
self.sequence_length = sequence_length
|
| 251 |
self.filter_out_sequence_length = filter_out_sequence_length
|
| 252 |
|
| 253 |
+
if filter_out_sequence_length is not None:
|
| 254 |
+
assert isinstance(filter_out_sequence_length, int)
|
| 255 |
assert (
|
| 256 |
+
sequence_length <= filter_out_sequence_length
|
| 257 |
+
), f"{sequence_length=} > {filter_out_sequence_length=}"
|
| 258 |
+
assert isinstance(sequence_length, int)
|
| 259 |
|
| 260 |
def get_info(self, description: str) -> DatasetInfo:
|
| 261 |
"""
|
|
|
|
| 285 |
}
|
| 286 |
)
|
| 287 |
return datasets.DatasetInfo(
|
| 288 |
+
# This is the description that will appear on the datasets page.
|
| 289 |
description=description,
|
| 290 |
+
# This defines the different columns of the dataset and their types
|
| 291 |
features=features,
|
| 292 |
)
|
| 293 |
|
|
|
|
| 320 |
"""
|
| 321 |
df = pd.read_csv(self.df_csv_file)
|
| 322 |
df = df.loc[df["chr"] != "chrMT"]
|
| 323 |
+
labels_name = LABELS_V1
|
|
|
|
|
|
|
| 324 |
|
| 325 |
split_df = df.loc[df["split"] == split]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
|
| 327 |
norm_values_df = pd.read_csv(self.normalization_values_csv_file)
|
| 328 |
+
m_t = (
|
| 329 |
+
norm_values_df[[f"m_t_{tissue}" for tissue in LABELS_V1]]
|
| 330 |
+
.to_numpy()
|
| 331 |
+
.reshape(-1)
|
| 332 |
+
)
|
| 333 |
+
sigma_t = (
|
| 334 |
+
norm_values_df[[f"sigma_t_{tissue}" for tissue in LABELS_V1]]
|
| 335 |
+
.to_numpy()
|
| 336 |
+
.reshape(-1)
|
| 337 |
+
)
|
| 338 |
+
m_g = (
|
| 339 |
+
norm_values_df[[f"m_g_{tissue}" for tissue in LABELS_V1]]
|
| 340 |
+
.to_numpy()
|
| 341 |
+
.reshape(-1)
|
| 342 |
+
)
|
| 343 |
+
sigma_g = (
|
| 344 |
+
norm_values_df[[f"sigma_g_{tissue}" for tissue in LABELS_V1]]
|
| 345 |
+
.to_numpy()
|
| 346 |
+
.reshape(-1)
|
| 347 |
+
)
|
| 348 |
|
| 349 |
key = 0
|
| 350 |
for idx, coordinates_row in split_df.iterrows():
|
|
|
|
| 356 |
start = coordinates_row["start"] - 1 # -1 since vcf coords are 1-based
|
| 357 |
|
| 358 |
chromosome = coordinates_row["chr"]
|
| 359 |
+
labels_row = coordinates_row[LABELS_V1]
|
| 360 |
padded_sequence = pad_sequence(
|
| 361 |
chromosome=self.reference_genome[chromosome],
|
| 362 |
start=start,
|
|
|
|
| 502 |
|
| 503 |
if negative_strand:
|
| 504 |
return chromosome[start:end].reverse.complement.seq
|
| 505 |
+
return chromosome[start:end].seq
|