|
|
--- |
|
|
license: mit |
|
|
--- |
|
|
|
|
|
# HC-Bench |
|
|
|
|
|
**HC-Bench** is a compact multi-part image benchmark for evaluating recognition and prompting robustness, especially in **hidden-content** scenes. It contains: |
|
|
|
|
|
- **object/** — 56 base images and 56 *hidden* variants of the same lemmas, plus prompts and metadata. |
|
|
- **text/** — 56 Latin/English and 56 Chinese lemma–description pairs with matching PNGs. |
|
|
- **wild/** — 53 in-the-wild images for additional generalization checks. |
|
|
|
|
|
--- |
|
|
|
|
|
## Repository structure |
|
|
|
|
|
``` |
|
|
|
|
|
HC-Bench/ |
|
|
├─ object/ |
|
|
│ ├─ base/ # 56 base images (7 types × 8 lemmas) |
|
|
│ ├─ hidden/ # 56 hidden-content variants (same lemmas) |
|
|
│ ├─ image\_base.txt # 7 types and their 8 lemmas each |
|
|
│ ├─ image\_generate\_prompts.txt# per-lemma scene prompts used for generation |
|
|
│ └─ lemmas\_descriptions.json # \[{Type, Lemma, Description}] × 56 |
|
|
├─ text/ |
|
|
│ ├─ Latin/ # 28 English PNGs |
|
|
│ ├─ Chinese/ # 28 Chinese PNGs |
|
|
│ ├─ English\_text.json # 56 entries (Type, Length, Rarity, Lemma, Description) |
|
|
│ └─ Chinese\_text.json # 56 entries (Type, Length, Rarity, Lemma, Description) |
|
|
└─ wild/ # 53 PNGs |
|
|
|
|
|
```` |
|
|
|
|
|
--- |
|
|
|
|
|
## Contents |
|
|
|
|
|
### `object/` |
|
|
- **`base/`**: Canonical image per lemma (e.g., `Apple.jpg`, `Einstein.png`). |
|
|
- **`hidden/`**: Composite/camouflaged image for the *same* lemma set (e.g., `apple.png`, `einstein.png`). |
|
|
- **`image_base.txt`**: The 7 high-level types and their 8 lemmas each (Humans, Species, Buildings, Cartoon, Furniture, Transports, Food). |
|
|
- **`image_generate_prompts.txt`**: Per-lemma prompts used to compose/generate scenes (e.g., *“A monorail cutting through a futuristic city with elevated walkways”* for `notredame`). |
|
|
- **`lemmas_descriptions.json`**: Minimal metadata with `{Type, Lemma, Description}` aligned 1:1 with the 56 lemmas. |
|
|
|
|
|
### `text/` |
|
|
- **`Latin/`** & **`Chinese/`**: 28 images each (total 56). |
|
|
- **`English_text.json`** & **`Chinese_text.json`**: 56-entry lists pairing lemmas to descriptions in two languages. |
|
|
(Note: The `English_text.json`/`Chinese_text.json` files include extra fields `Length` and `Rarity` for flexibility.) |
|
|
|
|
|
### `wild/` |
|
|
- 53 natural/urban scenes for robustness and transfer evaluation. |
|
|
|
|
|
--- |
|
|
|
|
|
## Quick start (🤗 Datasets) |
|
|
|
|
|
> HC-Bench uses the **ImageFolder**/“imagefolder” style. Class labels are inferred from directory names when present (e.g., `base`, `hidden`). If you prefer raw images without labels, pass `drop_labels=True`. |
|
|
|
|
|
### Load **object/base** and **object/hidden** |
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
base = load_dataset( |
|
|
"imagefolder", |
|
|
data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/object/base/*", |
|
|
split="train", |
|
|
drop_labels=True, # drop automatic label inference |
|
|
) |
|
|
|
|
|
hidden = load_dataset( |
|
|
"imagefolder", |
|
|
data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/object/hidden/*", |
|
|
split="train", |
|
|
drop_labels=True, |
|
|
) |
|
|
```` |
|
|
|
|
|
### Load **wild/** |
|
|
|
|
|
```python |
|
|
wild = load_dataset( |
|
|
"imagefolder", |
|
|
data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/wild/*", |
|
|
split="train", |
|
|
drop_labels=True, |
|
|
) |
|
|
``` |
|
|
|
|
|
### Load the **JSON** metadata (English/Chinese) |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
en = load_dataset( |
|
|
"json", |
|
|
data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/text/English_text.json", |
|
|
split="train", |
|
|
) |
|
|
zh = load_dataset( |
|
|
"json", |
|
|
data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/text/Chinese_text.json", |
|
|
split="train", |
|
|
) |
|
|
``` |
|
|
|
|
|
> Docs reference: `load_dataset` for JSON & files, and ImageFolder for image datasets. |
|
|
|
|
|
--- |
|
|
|
|
|
## Pairing base/hidden with metadata |
|
|
|
|
|
Filenames differ in casing/spaces between `base/` (`Apple.jpg`) and `hidden/` (`apple.png`). Use `object/lemmas_descriptions.json` as the canonical list of 56 lemmas and join by `Lemma`: |
|
|
|
|
|
```python |
|
|
import pandas as pd |
|
|
from datasets import load_dataset |
|
|
|
|
|
# 1) Canonical lemma list |
|
|
lemmas = load_dataset( |
|
|
"json", |
|
|
data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/object/lemmas_descriptions.json", |
|
|
split="train", |
|
|
).to_pandas() |
|
|
|
|
|
# 2) Build (lemma -> file) maps |
|
|
def to_lemma(name): # normalize filenames to lemma |
|
|
import re, os |
|
|
stem = os.path.splitext(os.path.basename(name))[0] |
|
|
return re.sub(r"\s+", "", stem).lower() |
|
|
|
|
|
base_ds = load_dataset( |
|
|
"imagefolder", |
|
|
data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/object/base/*", |
|
|
split="train", |
|
|
drop_labels=True, |
|
|
) |
|
|
hidden_ds = load_dataset( |
|
|
"imagefolder", |
|
|
data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/object/hidden/*", |
|
|
split="train", |
|
|
drop_labels=True, |
|
|
) |
|
|
|
|
|
import os |
|
|
base_map = {to_lemma(x["image"].filename): x["image"] for x in base_ds} |
|
|
hidden_map= {to_lemma(x["image"].filename): x["image"] for x in hidden_ds} |
|
|
|
|
|
# 3) Join |
|
|
lemmas["base_image"] = lemmas["Lemma"].apply(lambda L: base_map.get(L.lower())) |
|
|
lemmas["hidden_image"] = lemmas["Lemma"].apply(lambda L: hidden_map.get(L.lower())) |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
|
|
|
|
|
|
--- |
|
|
|
|
|
## Statistics |
|
|
|
|
|
* `object/base`: 56 images |
|
|
* `object/hidden`: 56 images |
|
|
* `text/Latin`: 28 images |
|
|
* `text/Chinese`: 28 images |
|
|
* `wild`: 53 images |
|
|
|
|
|
--- |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use **HC-Bench**, please cite: |
|
|
|
|
|
```bibtex |
|
|
@misc{li2025semvinkadvancingvlmssemantic, |
|
|
title={SemVink: Advancing VLMs' Semantic Understanding of Optical Illusions via Visual Global Thinking}, |
|
|
author={Sifan Li and Yujun Cai and Yiwei Wang}, |
|
|
year={2025}, |
|
|
eprint={2506.02803}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CL}, |
|
|
url={https://arxiv.org/abs/2506.02803}, |
|
|
} |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|