HC-Bench / README.md
JohnnyZeppelin's picture
Update README.md
2a1fad0 verified
---
license: mit
---
# HC-Bench
**HC-Bench** is a compact multi-part image benchmark for evaluating recognition and prompting robustness, especially in **hidden-content** scenes. It contains:
- **object/** — 56 base images and 56 *hidden* variants of the same lemmas, plus prompts and metadata.
- **text/** — 56 Latin/English and 56 Chinese lemma–description pairs with matching PNGs.
- **wild/** — 53 in-the-wild images for additional generalization checks.
---
## Repository structure
```
HC-Bench/
├─ object/
│ ├─ base/ # 56 base images (7 types × 8 lemmas)
│ ├─ hidden/ # 56 hidden-content variants (same lemmas)
│ ├─ image\_base.txt # 7 types and their 8 lemmas each
│ ├─ image\_generate\_prompts.txt# per-lemma scene prompts used for generation
│ └─ lemmas\_descriptions.json # \[{Type, Lemma, Description}] × 56
├─ text/
│ ├─ Latin/ # 28 English PNGs
│ ├─ Chinese/ # 28 Chinese PNGs
│ ├─ English\_text.json # 56 entries (Type, Length, Rarity, Lemma, Description)
│ └─ Chinese\_text.json # 56 entries (Type, Length, Rarity, Lemma, Description)
└─ wild/ # 53 PNGs
````
---
## Contents
### `object/`
- **`base/`**: Canonical image per lemma (e.g., `Apple.jpg`, `Einstein.png`).
- **`hidden/`**: Composite/camouflaged image for the *same* lemma set (e.g., `apple.png`, `einstein.png`).
- **`image_base.txt`**: The 7 high-level types and their 8 lemmas each (Humans, Species, Buildings, Cartoon, Furniture, Transports, Food).
- **`image_generate_prompts.txt`**: Per-lemma prompts used to compose/generate scenes (e.g., *“A monorail cutting through a futuristic city with elevated walkways”* for `notredame`).
- **`lemmas_descriptions.json`**: Minimal metadata with `{Type, Lemma, Description}` aligned 1:1 with the 56 lemmas.
### `text/`
- **`Latin/`** & **`Chinese/`**: 28 images each (total 56).
- **`English_text.json`** & **`Chinese_text.json`**: 56-entry lists pairing lemmas to descriptions in two languages.
(Note: The `English_text.json`/`Chinese_text.json` files include extra fields `Length` and `Rarity` for flexibility.)
### `wild/`
- 53 natural/urban scenes for robustness and transfer evaluation.
---
## Quick start (🤗 Datasets)
> HC-Bench uses the **ImageFolder**/“imagefolder” style. Class labels are inferred from directory names when present (e.g., `base`, `hidden`). If you prefer raw images without labels, pass `drop_labels=True`.
### Load **object/base** and **object/hidden**
```python
from datasets import load_dataset
base = load_dataset(
"imagefolder",
data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/object/base/*",
split="train",
drop_labels=True, # drop automatic label inference
)
hidden = load_dataset(
"imagefolder",
data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/object/hidden/*",
split="train",
drop_labels=True,
)
````
### Load **wild/**
```python
wild = load_dataset(
"imagefolder",
data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/wild/*",
split="train",
drop_labels=True,
)
```
### Load the **JSON** metadata (English/Chinese)
```python
from datasets import load_dataset
en = load_dataset(
"json",
data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/text/English_text.json",
split="train",
)
zh = load_dataset(
"json",
data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/text/Chinese_text.json",
split="train",
)
```
> Docs reference: `load_dataset` for JSON & files, and ImageFolder for image datasets.
---
## Pairing base/hidden with metadata
Filenames differ in casing/spaces between `base/` (`Apple.jpg`) and `hidden/` (`apple.png`). Use `object/lemmas_descriptions.json` as the canonical list of 56 lemmas and join by `Lemma`:
```python
import pandas as pd
from datasets import load_dataset
# 1) Canonical lemma list
lemmas = load_dataset(
"json",
data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/object/lemmas_descriptions.json",
split="train",
).to_pandas()
# 2) Build (lemma -> file) maps
def to_lemma(name): # normalize filenames to lemma
import re, os
stem = os.path.splitext(os.path.basename(name))[0]
return re.sub(r"\s+", "", stem).lower()
base_ds = load_dataset(
"imagefolder",
data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/object/base/*",
split="train",
drop_labels=True,
)
hidden_ds = load_dataset(
"imagefolder",
data_files="https://huggingface.co/datasets/JohnnyZeppelin/HC-Bench/resolve/main/object/hidden/*",
split="train",
drop_labels=True,
)
import os
base_map = {to_lemma(x["image"].filename): x["image"] for x in base_ds}
hidden_map= {to_lemma(x["image"].filename): x["image"] for x in hidden_ds}
# 3) Join
lemmas["base_image"] = lemmas["Lemma"].apply(lambda L: base_map.get(L.lower()))
lemmas["hidden_image"] = lemmas["Lemma"].apply(lambda L: hidden_map.get(L.lower()))
```
---
---
## Statistics
* `object/base`: 56 images
* `object/hidden`: 56 images
* `text/Latin`: 28 images
* `text/Chinese`: 28 images
* `wild`: 53 images
---
## Citation
If you use **HC-Bench**, please cite:
```bibtex
@misc{li2025semvinkadvancingvlmssemantic,
title={SemVink: Advancing VLMs' Semantic Understanding of Optical Illusions via Visual Global Thinking},
author={Sifan Li and Yujun Cai and Yiwei Wang},
year={2025},
eprint={2506.02803},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2506.02803},
}
```
---