Datasets:
metadata
dataset_info:
features:
- name: images
list: image
- name: problem
dtype: string
- name: answer
list: string
- name: image_id
dtype: string
splits:
- name: train
num_bytes: 4811206356
num_examples: 10000
- name: val
num_bytes: 730780590.5
num_examples: 1500
- name: test
num_bytes: 721301664.5
num_examples: 1500
download_size: 6261244811
dataset_size: 6263288611
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: val
path: data/val-*
- split: test
path: data/test-*
license: mit
task_categories:
- text-generation
language:
- en
This dataset was converted from MSCOCO 2014 aiming at adapting the COCO dataset to EasyR1 using the following script.
NOTE:
- This dataset only use COCO's segmentation data and caption data from its trainset and valset.
- The first N_val samples of original valset act as new valset.
- The last N_test samples of original valset act as new testset.
import os
import json
from datasets import Dataset, DatasetDict, Sequence
from datasets import Image as ImageData
from PIL import Image
N_train = 10000 # Limit to first 10000 images
N_val = 1500 # Limit to first 1500 images
N_test = 1500 # Limit to first 1500 images
MSCOCO_PATH = "/share/liyilin-nfs/datasets/MSCOCO"
def generate_train_data(data_path: str, instances: dict, captions: dict):
i = 0
for fname in os.listdir(data_path):
if i == N_train:
break
i += 1
if fname.lower().endswith(('.jpg', '.jpeg', '.png')):
image_id = os.path.splitext(fname)[0][-10:].lstrip("0")
image = Image.open(os.path.join(data_path, fname)).convert("RGB")
img_instances = instances.get(image_id, [])
img_captions = captions.get(image_id, [])
yield {
"images": [image],
"problem": "<image>Provide a brief description of the given image.",
"answer": img_captions,
"image_id": image_id
}
def generate_val_data(data_path: str, instances: dict, captions: dict):
fnames = sorted([f for f in os.listdir(data_path) if f.lower().endswith(('.jpg', '.jpeg', '.png'))])
for fname in fnames[:N_val]:
image_id = os.path.splitext(fname)[0][-10:].lstrip("0")
image = Image.open(os.path.join(data_path, fname)).convert("RGB")
img_instances = instances.get(image_id, [])
img_captions = captions.get(image_id, [])
yield {
"images": [image],
"problem": "<image>Provide a brief description of the given image.",
"answer": img_captions,
"image_id": image_id
}
def generate_test_data(data_path: str, instances: dict, captions: dict):
fnames = sorted([f for f in os.listdir(data_path) if f.lower().endswith(('.jpg', '.jpeg', '.png'))])
for fname in fnames[-N_test:]:
image_id = os.path.splitext(fname)[0][-10:].lstrip("0")
image = Image.open(os.path.join(data_path, fname)).convert("RGB")
img_instances = instances.get(image_id, [])
img_captions = captions.get(image_id, [])
yield {
"images": [image],
"problem": "<image>Provide a brief description of the given image.",
"answer": img_captions,
"image_id": image_id
}
def load_instances_and_captions(instances_json_path, captions_json_path):
with open(instances_json_path, 'r') as f:
instances_data = json.load(f)
with open(captions_json_path, 'r') as f:
captions_data = json.load(f)
instances_map = {}
for ann in instances_data['annotations']:
image_id = str(ann['image_id'])
category_id = ann['category_id']
if image_id not in instances_map:
instances_map[image_id] = []
instances_map[image_id].append(category_id)
captions_map = {}
for ann in captions_data['annotations']:
image_id = str(ann['image_id'])
caption = ann['caption']
if image_id not in captions_map:
captions_map[image_id] = []
captions_map[image_id].append(caption)
return instances_map, captions_map
def main():
train_path = f"{MSCOCO_PATH}/train2014"
val_path = f"{MSCOCO_PATH}/val2014"
train_instances_json = f"{MSCOCO_PATH}/annotations/instances_train2014.json"
val_instances_json = f"{MSCOCO_PATH}/annotations/instances_val2014.json"
train_captions_json = f"{MSCOCO_PATH}/annotations/captions_train2014.json"
val_captions_json = f"{MSCOCO_PATH}/annotations/captions_val2014.json"
train_instances_map, train_captions_map = load_instances_and_captions(train_instances_json, train_captions_json)
val_instances_map, val_captions_map = load_instances_and_captions(val_instances_json, val_captions_json)
trainset = Dataset.from_generator(
generate_train_data,
gen_kwargs={"data_path": train_path, "instances": train_instances_map, "captions": train_captions_map}
)
valset = Dataset.from_generator(
generate_val_data,
gen_kwargs={"data_path": val_path, "instances": val_instances_map, "captions": val_captions_map}
)
testset = Dataset.from_generator(
generate_test_data,
gen_kwargs={"data_path": val_path, "instances": val_instances_map, "captions": val_captions_map}
)
dataset = DatasetDict({"train": trainset, "val": valset, "test": testset}).cast_column("images", Sequence(ImageData()))
dataset.push_to_hub("JustinLeeCEO/MSCOCO2014")
print("Successfully pushed the dataset to HuggingFace!")
if __name__ == "__main__":
main()