Files changed (1) hide show
  1. README.md +107 -0
README.md ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ tags:
4
+ - science
5
+ - mathematics
6
+ - reasoning
7
+ - multiple-choice
8
+ - question-answering
9
+ task_categories:
10
+ - multiple-choice
11
+ - math
12
+ - question-answering
13
+ language:
14
+ - en
15
+ size_categories:
16
+ - 1K<n<10K
17
+ ---
18
+
19
+ # StreetMath Dataset
20
+
21
+ ## Dataset Summary
22
+
23
+ The **Street Math dataset** is a synthetic reasoning benchmark that evaluates a model’s ability to **approximate sums of decimal prices** in everyday shopping scenarios.
24
+ Each example presents a list of item prices, and the model must select the approximate total cost (before tax) from multiple-choice options.
25
+
26
+ The dataset is designed to test **numerical reasoning, estimation, and handling of decimal numbers**.
27
+ Language: **English**.
28
+ Domain: **mathematics applied to real-world shopping tasks**.
29
+
30
+ ## Languages
31
+
32
+ - **English (en)**: prompts and options are written in plain English, with U.S. dollar formatting for prices.
33
+
34
+ ## Data Instances
35
+
36
+ Example instance:
37
+
38
+ ```json
39
+ {
40
+ "id": "basket_sum_000243",
41
+ "topic": "basket_sum",
42
+ "subtopic": "decimal_prices",
43
+ "prompt": "You’re buying these items: $3.55, $15.42, $4.56, $12.63, $6.08. About how much will you pay (before tax)?",
44
+ "labels": ["A", "B", "C", "D"],
45
+ "correct_label": "A",
46
+ "choices": ["$43.00", "$14.11", "$42.24", "$182.80"],
47
+ "correct_option": 0,
48
+ "metadata": {
49
+ "exact_value": 42.24,
50
+ "good_value": 43.0,
51
+ "mild_value": 14.11,
52
+ "way_value": 182.8,
53
+ "prices": [3.55, 15.42, 4.56, 12.63, 6.08]
54
+ },
55
+ "split": "test"
56
+ }
57
+ ```
58
+
59
+ ## Intended Uses
60
+
61
+ The Basket Sum dataset is intended for:
62
+ - **Benchmarking language models** on basic numerical reasoning and arithmetic in natural language contexts.
63
+ - **Evaluating estimation skills**: testing whether models can provide approximate answers rather than exact calculations.
64
+ - **Educational and research purposes**: studying how models handle everyday math tasks such as adding decimal prices.
65
+
66
+ This dataset is **not** intended for:
67
+ - Financial or accounting applications.
68
+ - Real-world shopping or economic forecasting.
69
+ - Any critical decision-making where incorrect numerical outputs could cause harm.
70
+
71
+ ## Format
72
+
73
+ - **File type:** JSON Lines (`.jsonl`)
74
+ - **Each line:** one example as a JSON object
75
+ - **Compatible with:** Hugging Face `datasets` library (`load_dataset("json", data_files="...")`)
76
+
77
+
78
+ ## How to Get the Dataset
79
+
80
+ You can easily load this dataset from the Hugging Face Hub using the `datasets` library:
81
+
82
+ ```python
83
+ from datasets import load_dataset
84
+
85
+ # Load the dataset
86
+ dataset = load_dataset("Chiung-Yi/StreetMath")
87
+
88
+ # Access the test split
89
+ test_dataset = dataset["test"]
90
+
91
+ # Example: print the first item
92
+ print(test_dataset[0])
93
+ ```
94
+
95
+
96
+ ## Limitations and Ethical Considerations
97
+
98
+ **Licensing**: The license is currently unspecified. For any public or commercial use, it is necessary to verify the terms with the author.
99
+
100
+
101
+ ## Dataset Curators
102
+
103
+ - Original dataset created by [Chiung-Yi](https://huggingface.co/Chiung-Yi)
104
+
105
+ ### Disclaimer
106
+ This dataset card was written by a community contributor to improve documentation.
107
+ If you are the original author or know additional details, feel free to submit a pull request or open an issue to update this card.