File size: 6,657 Bytes
4a04bb5 a34b549 0e2c007 7a25341 0e2c007 660d674 5e6838c 0e2c007 20c3639 0e2c007 5e6838c 0e2c007 660d674 0e2c007 5e6838c 0e2c007 660d674 0e2c007 20c3639 0e2c007 4630460 0e2c007 20c3639 0e2c007 4630460 660d674 0e2c007 660d674 0e2c007 5e6838c 0e2c007 4630460 0e2c007 5e6838c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
license: mit
task_categories:
- text-generation
language:
- en
tags:
- code
pretty_name: GoodDocs-v0
size_categories:
- 100K<n<1M
---
# GoodDocs-v0: High-quality code documentation texts
GoodDocs-v0 is a text dataset scraped from high-quality documentation sources in the open-source ecosystem, in particular the top 1000 GitHub repositories by stars. It is designed to serve as a foundation for building reasoning systems grounded in software documentation, enabling tasks such as:
- Code and API understanding
- Documentation question answering and retrieval
- Planning and tool-use grounded in docs
- Long-context reasoning over multi-file documentation
## What's in this repository
- `cleaned_texts_on_metadata_only.parquet` — per-file Markdown documents and metadata extracted from documentation trees.
- `awesome-repos.parquet` — structured links extracted from Awesome lists-of-lists (`name`, `link`, `description`, `source_repo`, optional `stars`).
- `data_collection_utils/` — utilities to regenerate the dataset:
- `scrape_gh_docs.py` — main scraper/collector for documentation from GitHub repositories.
- `scrape_gh_docs_config.yaml` — reproducible configuration (inputs, outputs, filters, strategies).
- `github_links.txt` — the seed list of GitHub repositories (e.g., top repositories by stars).
- `awesome_final_repos.py` — extractor for non-"awesome" repositories referenced by Awesome lists.
- `awesome_scrap_config.yaml` — configuration for `awesome_final_repos.py` (root, depth, output, cache, workers, optional `fetch_stars`).
- `top_1000_repos.py` — helper to refresh the top‑repositories list via the public site referenced in the code.
## Schema
cleaned_texts_on_metadata_only.parquet — one row per Markdown file (see `md_rows` assembly in `main()`):
- `owner`, `repo`, `repo_dir`
- `file_rel_repo` — path relative to the saved repo root
- `file_rel_outdir` — path relative to `outdir`
- `size` — file size in bytes
- `mtime` — file modification time (epoch seconds)
- `lang` — language prediction field (via `langid.py` when language filtering is enabled)
- `content` — raw Markdown text
## Quickstart
Load the dataset with pandas:
```python
import pandas as pd
df = pd.read_parquet("cleaned_texts_on_metadata_only.parquet")
print(len(df), "rows")
print(df.columns.tolist())
```
Typical uses:
- Retrieval corpora for doc QA and RAG pipelines
- Supervision for instruction tuning grounded in docs
- Long-context model evaluation with real project documentation
## Reproducing the dataset
The scraper is configurable and designed to be reproducible via `data_collection_utils/scrape_gh_docs_config.yaml`.
1) Prerequisites
- System tools: `git`
- Python 3.11+ packages: `pandas`, `pyarrow`, `requests`, `tqdm`, `PyYAML`, `langid`
- For refreshing top repositories (optional): `playwright` (and `playwright install` for a browser)
- A GitHub API token in the environment (`GITHUB_TOKEN`) or a file referenced by the config (`token_file`)
2) Inputs
- `data_collection_utils/github_links.txt` — list of repositories to process (either `owner/repo` or full URLs)
- You can refresh this list with `data_collection_utils/top_1000_repos.py` if desired.
3) Run
```bash
python3 data_collection_utils/scrape_gh_docs.py
# or to rebuild Parquet(s) from existing downloads without any network calls:
python3 data_collection_utils/scrape_gh_docs.py --no-fetch
```
Configuration (YAML-driven; see `data_collection_utils/scrape_gh_docs_config.yaml`):
- `input` — path to a file containing one repo per line (owner/repo or full URL)
- `outdir`, `md_failed`, `texts_parquet`
- `workers`, `dry_run`, `quiet`, `no_fetch`
- `token_file` — GitHub token location (or set `GITHUB_TOKEN` env var)
- `prefer_sparse`, `prefer_zip`, `only_md`, `min_repo_age_years`
- `lang_filter`, `min_text_chars` — control language gating in `cleaned_texts_on_metadata_only.parquet`
Output is written to `<outdir>/cleaned_texts_on_metadata_only.parquet`.
## Awesome list extraction
`data_collection_utils/awesome_final_repos.py` crawls the Awesome list-of-lists and extracts final repositories (those whose repo names do not include "awesome"). For each bullet entry like:
```
* [Fuse](https://github.com/owner/repo) - Mobile development tools.
```
It records:
- `name`: the markdown link text (e.g., `Fuse`).
- `link`: canonical GitHub repository URL (e.g., `https://github.com/owner/repo`).
- `description`: text after the ` - ` dash, or the rest of the line (with the link and bullet removed) if no dash.
- `stars` (optional): repository stargazers count when enabled.
Configuration is YAML-first via `data_collection_utils/awesome_scrap_config.yaml`:
- `root`: root Awesome repository URL, e.g., `https://github.com/sindresorhus/awesome`.
- `depth`: recursion depth for nested Awesome lists (0 = only root).
- `output_dir`: directory for `awesome-repos.parquet`.
- `cache_dir`: directory for README fetch caches.
- `workers`: concurrency for network requests.
- `fetch_stars`: when `true`, also fetch stargazers for each parsed repo (makes extra API calls) and include a `stars` column.
Run:
```bash
python3 data_collection_utils/awesome_final_repos.py
# or adjust via YAML first, then run without flags
```
Schema of `awesome-repos.parquet`:
- `name` — link text from the Awesome entry.
- `link` — canonical GitHub URL (<https://github.com/owner/repo>).
- `description` — description text without the leading ` - ` and without repeating the name.
- `source_repo` — the Awesome list repository where the entry was found, formatted as `owner/repo`.
- `stars` — integer, optional; only present when `fetch_stars: true`.
## Language filtering
Language detection is performed with `langid.py` (see imports in `data_collection_utils/scrape_gh_docs.py`). The default configuration keeps English-only files (`lang_filter: en`). There is no probability/confidence threshold; we gate by the predicted language label and a minimum text length (`min_text_chars`).
## Licensing
- Code and dataset scaffolding in this repository are under the MIT license (see frontmatter).
- The original documentation content belongs to the respective upstream projects and remains governed by their licenses. Please consult each repository’s license before redistribution or commercial use.
## Acknowledgements
This dataset draws from the open-source community’s documentation efforts. The seed list targets highly-starred repositories to bias toward quality, breadth, and maturity.
Note to self: `size` distribution: 20th percentile - 363 symbols, 50p - 701, 95p - 17392
|