Omarrran's picture
Rename Readme.md to README.md
0a003e8 verified
---
license: mit
task_categories:
- text-classification
- text-generation
- summarization
- feature-extraction
language:
- en
size_categories:
- 1K<n<10K
tags:
- news
- articles
- bbc
- nlp
- text
pretty_name: BBC News Articles Dataset
---
# BBC News Articles Dataset
## Dataset Description
A collection of **2,225 news articles** from BBC, suitable for text classification, summarization, and NLP tasks.
### Dataset Summary
| Metric | Value |
|--------|-------|
| **Total Articles** | 2,225 |
| **Unique Articles** | 2,092 |
| **Columns** | `filename`, `article_text` |
| **Language** | English |
| **Source** | BBC News |
## Dataset Structure
### Data Fields
| Field | Type | Description |
|-------|------|-------------|
| `filename` | string | Unique identifier/filename for each article |
| `article_text` | string | Full text content of the news article |
### Text Statistics
| Metric | Min | Max | Mean | Median | Std |
|--------|-----|-----|------|--------|-----|
| **Characters** | 470 | 25,453 | 2,232 | 1,935 | 1,364 |
| **Words** | 84 | 4,428 | 379 | 326 | 238 |
| **Sentences** | 4 | 248 | 19 | 16 | 13 |
### Vocabulary Statistics
| Metric | Value |
|--------|-------|
| **Total Words (corpus)** | 815,279 |
| **Unique Words (vocabulary)** | 27,205 |
| **Vocabulary (excl. stopwords)** | 27,070 |
| **Lexical Diversity** | 0.0334 |
| **Avg Words per Article** | 366.4 |
### Top 10 Most Frequent Words
| Word | Frequency |
|------|-----------|
| said | 7,253 |
| mr | 2,994 |
| would | 2,628 |
| also | 2,156 |
| people | 2,041 |
| new | 1,898 |
| us | 1,818 |
| year | 1,813 |
| one | 1,752 |
| could | 1,534 |
![image](https://cdn-uploads.huggingface.co/production/uploads/66afb3f1eaf3e876595627bf/D9huC41Qb5Msy6d5Xv_42.png)
## Usage
### Loading with Hugging Face Datasets
```python
from datasets import load_dataset
dataset = load_dataset("Omarrran/BBC_Eng_News_Articles_dataset")
# Access training data
train_data = dataset['train']
# View first article
print(train_data[0]['article_text'][:500])
```
### Loading with Pandas
```python
import pandas as pd
from datasets import load_dataset
dataset = load_dataset("Omarrran/BBC_Eng_News_Articles_dataset")
df = dataset['train'].to_pandas()
# Basic exploration
print(f"Total articles: {len(df)}")
print(df.head())
```
### Text Classification Example
```python
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
# Load data
df = dataset['train'].to_pandas()
# If categories available from filename
df['category'] = df['filename'].apply(lambda x: x.split('/')[0])
# Split
X_train, X_test, y_train, y_test = train_test_split(
df['article_text'], df['category'], test_size=0.2, random_state=42
)
# Vectorize and train
vectorizer = TfidfVectorizer(max_features=5000, stop_words='english')
X_train_vec = vectorizer.fit_transform(X_train)
X_test_vec = vectorizer.transform(X_test)
clf = MultinomialNB()
clf.fit(X_train_vec, y_train)
print(f"Accuracy: {clf.score(X_test_vec, y_test):.2%}")
```
### Summarization Example
```python
from transformers import pipeline
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Summarize first article
article = dataset['train'][0]['article_text']
summary = summarizer(article[:1024], max_length=130, min_length=30)
print(summary[0]['summary_text'])
```
## Suitable Tasks
This dataset is ideal for:
- **Text Classification**: Categorize articles by topic
- **Summarization**: Generate article summaries
- **Named Entity Recognition**: Extract entities from news
- **Keyword Extraction**: Identify key topics
- **Topic Modeling**: Discover latent themes
- **Sentiment Analysis**: Analyze article tone
- **Text Generation**: Fine-tune language models
- **Information Retrieval**: Build search systems
## Data Quality
| Check | Status |
|-------|--------|
| Empty/null articles | 0 found |
| Encoding issues | Clean (UTF-8) |
## Limitations
- Dataset is limited to BBC News articles
- May contain temporal bias based on collection period
- English language only
- News domain specific vocabulary
## Citation
```bibtex
@dataset{bbc_news_articles,
title = {BBC_Eng_News_Articles_dataset_hnm},
Author ={Haq Nawaz Malik}
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/datasets/Omarrran/BBC_Eng_News_Articles_dataset/}}
}
```
## License
This dataset is provided for research and educational purposes under the MIT License.
---