Omartificial-Intelligence-Space's picture
Update README.md
eb8adf7 verified
metadata
license: cc-by-nc-4.0
gated: true
extra_gated_prompt: Please provide the required information to access this model
extra_gated_fields:
  Full Name:
    type: text
  Affiliation / Company:
    type: text
  Email Address:
    type: text
  Intended Use:
    type: select
    options:
      - Research
      - Education
      - Commercial Exploration
      - Academic Project
      - Other
extra_gated_heading: Access Request  Provide Required Information
extra_gated_description: Before accessing this model, please complete the form below.
extra_gated_button_content: Submit Access Request
configs:
  - config_name: Communication & Social Media
    data_files:
      - split: train
        path: Communication & Social Media/train-*
  - config_name: Culture & Heritage
    data_files:
      - split: train
        path: Culture & Heritage/train-*
  - config_name: Daily Life & Household
    data_files:
      - split: train
        path: Daily Life & Household/train-*
  - config_name: Education
    data_files:
      - split: train
        path: Education/train-*
  - config_name: Entertainment
    data_files:
      - split: train
        path: Entertainment/train-*
  - config_name: Finance & Banking
    data_files:
      - split: train
        path: Finance & Banking/train-*
  - config_name: Food
    data_files:
      - split: train
        path: Food/train-*
  - config_name: Geography
    data_files:
      - split: train
        path: Geography/train-*
  - config_name: Government Services
    data_files:
      - split: train
        path: Government Services/train-*
  - config_name: History
    data_files:
      - split: train
        path: History/train-*
  - config_name: Medical
    data_files:
      - split: train
        path: Medical/train-*
  - config_name: Nature & Environment
    data_files:
      - split: train
        path: Nature & Environment/train-*
  - config_name: Saudi Anthropology
    data_files:
      - split: train
        path: Saudi Anthropology/train-*
  - config_name: Shopping & Fashion
    data_files:
      - split: train
        path: Shopping & Fashion/train-*
  - config_name: Social Gatherings & Events
    data_files:
      - split: train
        path: Social Gatherings & Events/train-*
  - config_name: Sports & Fitness
    data_files:
      - split: train
        path: Sports & Fitness/train-*
  - config_name: Technology
    data_files:
      - split: train
        path: Technology/train-*
  - config_name: Transportation
    data_files:
      - split: train
        path: Transportation/train-*
  - config_name: Travel
    data_files:
      - split: train
        path: Travel/train-*
  - config_name: Weather & Seasons
    data_files:
      - split: train
        path: Weather & Seasons/train-*
  - config_name: Work & Office
    data_files:
      - split: train
        path: Work & Office/train-*
dataset_info:
  - config_name: Communication & Social Media
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 26546
        num_examples: 100
    download_size: 17311
    dataset_size: 26546
  - config_name: Culture & Heritage
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 22676
        num_examples: 102
    download_size: 14135
    dataset_size: 22676
  - config_name: Daily Life & Household
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 16680
        num_examples: 98
    download_size: 11583
    dataset_size: 16680
  - config_name: Education
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 36869
        num_examples: 150
    download_size: 23302
    dataset_size: 36869
  - config_name: Entertainment
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 18468
        num_examples: 106
    download_size: 12344
    dataset_size: 18468
  - config_name: Finance & Banking
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 51748
        num_examples: 200
    download_size: 13030
    dataset_size: 51748
  - config_name: Food
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 27939
        num_examples: 200
    download_size: 15511
    dataset_size: 27939
  - config_name: Geography
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 14147
        num_examples: 91
    download_size: 9469
    dataset_size: 14147
  - config_name: Government Services
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 38613
        num_examples: 200
    download_size: 21323
    dataset_size: 38613
  - config_name: History
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 23662
        num_examples: 150
    download_size: 6347
    dataset_size: 23662
  - config_name: Medical
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 45448
        num_examples: 200
    download_size: 27780
    dataset_size: 45448
  - config_name: Nature & Environment
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 41532
        num_examples: 200
    download_size: 26052
    dataset_size: 41532
  - config_name: Saudi Anthropology
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 24738
        num_examples: 104
    download_size: 14684
    dataset_size: 24738
  - config_name: Shopping & Fashion
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 19514
        num_examples: 100
    download_size: 13309
    dataset_size: 19514
  - config_name: Social Gatherings & Events
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 17539
        num_examples: 100
    download_size: 12046
    dataset_size: 17539
  - config_name: Sports & Fitness
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 48747
        num_examples: 200
    download_size: 25461
    dataset_size: 48747
  - config_name: Technology
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 20857
        num_examples: 100
    download_size: 13317
    dataset_size: 20857
  - config_name: Transportation
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 13759
        num_examples: 109
    download_size: 10299
    dataset_size: 13759
  - config_name: Travel
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 26486
        num_examples: 150
    download_size: 13096
    dataset_size: 26486
  - config_name: Weather & Seasons
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 32327
        num_examples: 200
    download_size: 19256
    dataset_size: 32327
  - config_name: Work & Office
    features:
      - name: Anchor
        dtype: string
      - name: Positive
        dtype: string
      - name: Negative
        dtype: string
    splits:
      - name: train
        num_bytes: 18158
        num_examples: 104
    download_size: 11650
    dataset_size: 18158
language:
  - ar
pretty_name: Saudi Triplet
task_categories:
  - feature-extraction
  - sentence-similarity
tags:
  - saudi
  - Arabic
  - Triplet
size_categories:
  - 1K<n<10K

📂 SaudiDialect-Triplet-21 : Saudi Triplet Dataset (SABER Training Data)

🧩 Dataset Summary

The Saudi Triplet Dataset is a high-quality corpus of 2,964 sentence triplets (Anchor, Positive, Negative) specifically curated to capture the nuances of Saudi Arabic dialects (Najdi, Hijazi, Gulf, etc.).

This dataset was created to fine-tune semantic embedding models such as SABER for tasks like Semantic Search, Retrieval-Augmented Generation (RAG), and Clustering.

It covers 21 distinct domains reflecting real-life Saudi contexts, ranging from Government Services and Finance to Tribal Anthropology and Bedouin Culture.

Team

Special thanks to the exceptional team behind this dataset.

Team

✈️

Travel
Mohammed Alhassan

🍔

Food
Abdulelah Alankari

🛍️

Fashion
Reem Alsuliman

🎓

Education
Joud Aloqla

💼

Work
Nouf Alessa

📱

Tech
Jude Alsubaie

🏋️

Sports
Albara Aseri

🚗

Transport
Wajn Alqahtani

🎬

Entertainment
Muzon Assiri

🏠

Daily Life
Jana Alsuhaibani

💰

Finance
Abdullah Alsalem

🌤️

Weather
Huda Aldawsari

🎉

Events
Shaden Alosaimi

🩺

Medical
Munirah Alsubaie

📢

Social
Mohammed Alziyad

🇸🇦

Culture
Shatha Alotaibi

🌿

Nature
Norah Altwijri

📜

History
Renad Alrifai

🗺️

Geography
Murtada Altarouti

🏛️

Gov
Lama Almutairi

👥

Anthro
Adnan Hawsawi

📊 Dataset Statistics

Statistic Value
Total Triplets 2,964
Total Domains 21
Language Saudi Dialect
Duplicate Anchors 59 (Multi-positive/negative pairings)

📏 Sentence Lengths (Word Count)

The dataset consists primarily of short-to-medium length queries and sentences, typical of search and conversational inputs.

Metric Anchor Positive Negative
Mean 6.42 6.50 5.34
Std Dev 1.85 1.96 1.77
Min 2 2 2
Max 13 15 12

🏙️ Domain Distribution

The dataset is balanced across high-resource topics (Food, Finance) and specific cultural topics (Anthropology, Heritage).

Domain Count
Food 200
Finance & Banking 200
Government Services 200
Medical 200
Sports & Fitness 200
Weather & Seasons 200
Nature & Environment 200
Education 150
Travel 150
History 150
Transportation 109
Entertainment 106
Saudi Anthropology 104
Work & Office 104
Culture & Heritage 102
Shopping & Fashion 100
Technology 100
Communication & Social Media 100
Social Gatherings & Events 100
Daily Life & Household 98
Geography 91

📂 Data Structure

Each row in the dataset represents a training triplet designed for Contrastive Learning (e.g., MNRL).

Column Name Type Description
Anchor String The reference sentence/query in Saudi dialect.
Positive String A sentence semantically similar to the Anchor (paraphrase or answer).
Negative String A sentence semantically dissimilar to the Anchor (different topic or meaning).
Domain String The topic category of the triplet.

📝 Data Samples

Below are real examples from the dataset showing the dialectal variations and domain diversity.

Domain Anchor (Query) Positive (Match) Negative (Mismatch)
Shopping & Fashion أبي فرشه تفك العقد وما تقطع الشعر ابي مشط ما يخرب الشعر وينتفه متى بيوصلني طقم الألماس اللي طلبته؟
Finance & Banking أبغا أفتح محفظة أسهم وأبدأ استثمار بسيط أفكر أبدأ تداول خفيف في الأسهم عن طريق المحفظة ناوي أزور العائلة في القرية الأسبوع الجاي
Culture & Heritage أمس سمعت قصائد عن الشجاعة والفروسية القصايد البدوية معانيها قوية شغلت الغسالة بالغلط
Food السوفليه عندهم فخم السوفليه يذوب بالفم ما وصلت الشحنة
History الوالد كان دايم يذكر مملكة لحيان شفت برنامج يتكلم عن سوق عكاظ طلبي تأخر بالمطعم
Travel وين أحصل على جولات سياحية رخيصة؟ أبغى ألقى عروض سياحية اقتصادية الجو حار وما أقدر أطلع

⚠️ Quality & Integrity

  • Missing Data: There are no missing values in the Anchor, Positive, or Negative columns.
  • Duplicates: There are 59 duplicate anchors. This is intentional in some cases to provide multiple positive pairings for the same query or to enforce separation from different hard negatives.
  • Dialect Intensity: The text ranges from "White Dialect" (understandable by most Arabs) to deep Saudi vernacular (specific to Najd/Hijaz/South).

🛠️ Usage

This dataset is optimized for training sentence transformers using MultipleNegativesRankingLoss.

from datasets import load_dataset

# Load the dataset (Example path)
dataset = load_dataset("Omartificial-Intelligence-Space/Saudi-Triplet-Dataset")

# Print first example
print(dataset['train'][0])