id
int64 | date
string | text
string | A01B
int64 | A01C
int64 | A01D
int64 | A01F
int64 | A01G
int64 | A01H
int64 | A01J
int64 | A01K
int64 | A01L
int64 | A01M
int64 | A01N
int64 | A21B
int64 | A21C
int64 | A21D
int64 | A22B
int64 | A22C
int64 | A23B
int64 | A23C
int64 | A23D
int64 | A23F
int64 | A23G
int64 | A23J
int64 | A23K
int64 | A23L
int64 | A23N
int64 | A23P
int64 | A23V
int64 | A23Y
int64 | A24B
int64 | A24C
int64 | A24D
int64 | A24F
int64 | A41B
int64 | A41C
int64 | A41D
int64 | A41F
int64 | A41G
int64 | A41H
int64 | A42B
int64 | A42C
int64 | A43B
int64 | A43C
int64 | A43D
int64 | A44B
int64 | A44C
int64 | A44D
int64 | A45B
int64 | A45C
int64 | A45D
int64 | A45F
int64 | A46B
int64 | A46D
int64 | A47B
int64 | A47C
int64 | A47D
int64 | A47F
int64 | A47G
int64 | A47H
int64 | A47J
int64 | A47K
int64 | A47L
int64 | A61B
int64 | A61C
int64 | A61D
int64 | A61F
int64 | A61G
int64 | A61H
int64 | A61J
int64 | A61K
int64 | A61L
int64 | A61M
int64 | A61N
int64 | A61P
int64 | A61Q
int64 | A62B
int64 | A62C
int64 | A62D
int64 | A63B
int64 | A63C
int64 | A63D
int64 | A63F
int64 | A63G
int64 | A63H
int64 | A63J
int64 | A63K
int64 | B01B
int64 | B01D
int64 | B01F
int64 | B01J
int64 | B01L
int64 | B02B
int64 | B02C
int64 | B03B
int64 | B03C
int64 | B03D
int64 | B04B
int64 | B04C
int64 | B05B
int64 | B05C
int64 | B05D
int64 | B06B
int64 | B07B
int64 | B07C
int64 | B08B
int64 | B09B
int64 | B09C
int64 | B21B
int64 | B21C
int64 | B21D
int64 | B21F
int64 | B21G
int64 | B21H
int64 | B21J
int64 | B21K
int64 | B21L
int64 | B22C
int64 | B22D
int64 | B22F
int64 | B23B
int64 | B23C
int64 | B23D
int64 | B23F
int64 | B23G
int64 | B23H
int64 | B23K
int64 | B23P
int64 | B23Q
int64 | B24B
int64 | B24C
int64 | B24D
int64 | B25B
int64 | B25C
int64 | B25D
int64 | B25F
int64 | B25G
int64 | B25H
int64 | B25J
int64 | B26B
int64 | B26D
int64 | B26F
int64 | B27B
int64 | B27C
int64 | B27D
int64 | B27F
int64 | B27G
int64 | B27H
int64 | B27J
int64 | B27K
int64 | B27L
int64 | B27M
int64 | B27N
int64 | B28B
int64 | B28C
int64 | B28D
int64 | B29B
int64 | B29C
int64 | B29D
int64 | B29K
int64 | B29L
int64 | B30B
int64 | B31B
int64 | B31C
int64 | B31D
int64 | B31F
int64 | B32B
int64 | B33Y
int64 | B41B
int64 | B41C
int64 | B41D
int64 | B41F
int64 | B41G
int64 | B41J
int64 | B41K
int64 | B41L
int64 | B41M
int64 | B41N
int64 | B41P
int64 | B42B
int64 | B42C
int64 | B42D
int64 | B42F
int64 | B42P
int64 | B43K
int64 | B43L
int64 | B43M
int64 | B44B
int64 | B44C
int64 | B44D
int64 | B44F
int64 | B60B
int64 | B60C
int64 | B60D
int64 | B60F
int64 | B60G
int64 | B60H
int64 | B60J
int64 | B60K
int64 | B60L
int64 | B60M
int64 | B60N
int64 | B60P
int64 | B60Q
int64 | B60R
int64 | B60S
int64 | B60T
int64 | B60V
int64 | B60W
int64 | B60Y
int64 | B61B
int64 | B61C
int64 | B61D
int64 | B61F
int64 | B61G
int64 | B61H
int64 | B61J
int64 | B61K
int64 | B61L
int64 | B62B
int64 | B62C
int64 | B62D
int64 | B62H
int64 | B62J
int64 | B62K
int64 | B62L
int64 | B62M
int64 | B63B
int64 | B63C
int64 | B63G
int64 | B63H
int64 | B63J
int64 | B64B
int64 | B64C
int64 | B64D
int64 | B64F
int64 | B64G
int64 | B65B
int64 | B65C
int64 | B65D
int64 | B65F
int64 | B65G
int64 | B65H
int64 | B66B
int64 | B66C
int64 | B66D
int64 | B66F
int64 | B67B
int64 | B67C
int64 | B67D
int64 | B68B
int64 | B68C
int64 | B68F
int64 | B68G
int64 | B81B
int64 | B81C
int64 | B82B
int64 | B82Y
int64 | C01B
int64 | C01C
int64 | C01D
int64 | C01F
int64 | C01G
int64 | C01P
int64 | C02F
int64 | C03B
int64 | C03C
int64 | C04B
int64 | C05B
int64 | C05C
int64 | C05D
int64 | C05F
int64 | C05G
int64 | C06B
int64 | C06C
int64 | C06D
int64 | C07B
int64 | C07C
int64 | C07D
int64 | C07F
int64 | C07G
int64 | C07H
int64 | C07J
int64 | C07K
int64 | C08B
int64 | C08C
int64 | C08F
int64 | C08G
int64 | C08H
int64 | C08J
int64 | C08K
int64 | C08L
int64 | C09B
int64 | C09C
int64 | C09D
int64 | C09F
int64 | C09G
int64 | C09H
int64 | C09J
int64 | C09K
int64 | C10B
int64 | C10C
int64 | C10F
int64 | C10G
int64 | C10H
int64 | C10J
int64 | C10K
int64 | C10L
int64 | C10M
int64 | C10N
int64 | C11B
int64 | C11C
int64 | C11D
int64 | C12C
int64 | C12F
int64 | C12G
int64 | C12H
int64 | C12J
int64 | C12L
int64 | C12M
int64 | C12N
int64 | C12P
int64 | C12Q
int64 | C12R
int64 | C12Y
int64 | C13B
int64 | C13K
int64 | C14B
int64 | C14C
int64 | C21B
int64 | C21C
int64 | C21D
int64 | C22B
int64 | C22C
int64 | C22F
int64 | C23C
int64 | C23D
int64 | C23F
int64 | C23G
int64 | C25B
int64 | C25C
int64 | C25D
int64 | C25F
int64 | C30B
int64 | C40B
int64 | D01B
int64 | D01C
int64 | D01D
int64 | D01F
int64 | D01G
int64 | D01H
int64 | D02G
int64 | D02H
int64 | D02J
int64 | D03C
int64 | D03D
int64 | D03J
int64 | D04B
int64 | D04C
int64 | D04D
int64 | D04G
int64 | D04H
int64 | D05B
int64 | D05C
int64 | D05D
int64 | D06B
int64 | D06C
int64 | D06F
int64 | D06G
int64 | D06H
int64 | D06J
int64 | D06L
int64 | D06M
int64 | D06N
int64 | D06P
int64 | D06Q
int64 | D07B
int64 | D10B
int64 | D21B
int64 | D21C
int64 | D21D
int64 | D21F
int64 | D21G
int64 | D21H
int64 | D21J
int64 | E01B
int64 | E01C
int64 | E01D
int64 | E01F
int64 | E01H
int64 | E02B
int64 | E02C
int64 | E02D
int64 | E02F
int64 | E03B
int64 | E03C
int64 | E03D
int64 | E03F
int64 | E04B
int64 | E04C
int64 | E04D
int64 | E04F
int64 | E04G
int64 | E04H
int64 | E05B
int64 | E05C
int64 | E05D
int64 | E05F
int64 | E05G
int64 | E05Y
int64 | E06B
int64 | E06C
int64 | E21B
int64 | E21C
int64 | E21D
int64 | E21F
int64 | F01B
int64 | F01C
int64 | F01D
int64 | F01K
int64 | F01L
int64 | F01M
int64 | F01N
int64 | F01P
int64 | F02B
int64 | F02C
int64 | F02D
int64 | F02F
int64 | F02G
int64 | F02K
int64 | F02M
int64 | F02N
int64 | F02P
int64 | F03B
int64 | F03C
int64 | F03D
int64 | F03G
int64 | F03H
int64 | F04B
int64 | F04C
int64 | F04D
int64 | F04F
int64 | F05B
int64 | F05C
int64 | F05D
int64 | F15B
int64 | F15C
int64 | F15D
int64 | F16B
int64 | F16C
int64 | F16D
int64 | F16F
int64 | F16G
int64 | F16H
int64 | F16J
int64 | F16K
int64 | F16L
int64 | F16M
int64 | F16N
int64 | F16P
int64 | F16S
int64 | F16T
int64 | F17B
int64 | F17C
int64 | F17D
int64 | F21H
int64 | F21K
int64 | F21L
int64 | F21S
int64 | F21V
int64 | F21W
int64 | F21Y
int64 | F22B
int64 | F22D
int64 | F22G
int64 | F23B
int64 | F23C
int64 | F23D
int64 | F23G
int64 | F23H
int64 | F23J
int64 | F23K
int64 | F23L
int64 | F23M
int64 | F23N
int64 | F23Q
int64 | F23R
int64 | F24B
int64 | F24C
int64 | F24D
int64 | F24F
int64 | F24H
int64 | F24J
int64 | F24S
int64 | F24T
int64 | F24V
int64 | F25B
int64 | F25C
int64 | F25D
int64 | F25J
int64 | F26B
int64 | F27B
int64 | F27D
int64 | F27M
int64 | F28B
int64 | F28C
int64 | F28D
int64 | F28F
int64 | F28G
int64 | F41A
int64 | F41B
int64 | F41C
int64 | F41F
int64 | F41G
int64 | F41H
int64 | F41J
int64 | F42B
int64 | F42C
int64 | F42D
int64 | G01B
int64 | G01C
int64 | G01D
int64 | G01F
int64 | G01G
int64 | G01H
int64 | G01J
int64 | G01K
int64 | G01L
int64 | G01M
int64 | G01N
int64 | G01P
int64 | G01Q
int64 | G01R
int64 | G01S
int64 | G01T
int64 | G01V
int64 | G01W
int64 | G02B
int64 | G02C
int64 | G02F
int64 | G03B
int64 | G03C
int64 | G03D
int64 | G03F
int64 | G03G
int64 | G03H
int64 | G04B
int64 | G04C
int64 | G04D
int64 | G04F
int64 | G04G
int64 | G04R
int64 | G05B
int64 | G05D
int64 | G05F
int64 | G05G
int64 | G06C
int64 | G06D
int64 | G06E
int64 | G06F
int64 | G06G
int64 | G06J
int64 | G06K
int64 | G06M
int64 | G06N
int64 | G06Q
int64 | G06T
int64 | G07B
int64 | G07C
int64 | G07D
int64 | G07F
int64 | G07G
int64 | G08B
int64 | G08C
int64 | G08G
int64 | G09B
int64 | G09C
int64 | G09D
int64 | G09F
int64 | G09G
int64 | G10B
int64 | G10C
int64 | G10D
int64 | G10F
int64 | G10G
int64 | G10H
int64 | G10K
int64 | G10L
int64 | G11B
int64 | G11C
int64 | G12B
int64 | G16B
int64 | G16C
int64 | G16H
int64 | G16Z
int64 | G21B
int64 | G21C
int64 | G21D
int64 | G21F
int64 | G21G
int64 | G21H
int64 | G21J
int64 | G21K
int64 | G21Y
int64 | H01B
int64 | H01C
int64 | H01F
int64 | H01G
int64 | H01H
int64 | H01J
int64 | H01K
int64 | H01L
int64 | H01M
int64 | H01P
int64 | H01Q
int64 | H01R
int64 | H01S
int64 | H01T
int64 | H02B
int64 | H02G
int64 | H02H
int64 | H02J
int64 | H02K
int64 | H02M
int64 | H02N
int64 | H02P
int64 | H02S
int64 | H03B
int64 | H03C
int64 | H03D
int64 | H03F
int64 | H03G
int64 | H03H
int64 | H03J
int64 | H03K
int64 | H03L
int64 | H03M
int64 | H04B
int64 | H04H
int64 | H04J
int64 | H04K
int64 | H04L
int64 | H04M
int64 | H04N
int64 | H04Q
int64 | H04R
int64 | H04S
int64 | H04W
int64 | H05B
int64 | H05C
int64 | H05F
int64 | H05G
int64 | H05H
int64 | H05K
int64 | Y02A
int64 | Y02B
int64 | Y02C
int64 | Y02D
int64 | Y02E
int64 | Y02P
int64 | Y02T
int64 | Y02W
int64 | Y04S
int64 | Y10S
int64 | Y10T
int64 | src_fr
string | src_len
int64 | u1
string | a1
string | text_sep
string | raw_u1
string | raw_a1
string | final_seq
string |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8,788,730
|
2014-07-22
|
1. A method for sending a keycode of a non-keyboard apparatus, comprising the steps of: (a) connecting the non-keyboard apparatus to a computer so as to perform device enumeration and generate enumeration information, wherein the enumeration information is recorded by the non-keyboard apparatus and includes an enumeration value; (b) identifying, according to the enumeration value, the kind of an operating system used by the computer, and recording the kind of the operating system by the non-keyboard apparatus; and (c) reading the kind of the operating system so as to determine a preset second keycode that matches the kind of the operating system, wherein the second keycode is an ASCII (American Standard Code for Information Interchange) code.
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1. A method for sending a keycode of a non-keyboard apparatus, comprising the steps of: (a) connecting the non-keyboard apparatus to a computer so as to perform device enumeration and generate enumeration information, wherein the enumeration information is recorded by the non-keyboard apparatus and includes an enumeration value; (b) identifying, according to the enumeration value, the kind of an operating system used by the computer, and recording the kind of the operating system by the non-keyboard apparatus; and (c) reading the kind of the operating system so as to determine a preset second keycode that matches the kind of the operating system, wherein the second keycode is an ASCII (American Standard Code for Information Interchange) code.
| 752
|
How is the second keycode determined based on the operating system kind in the method described?
|
The second keycode is determined by first connecting the non-keyboard apparatus to the computer to obtain enumeration information, which includes an enumeration value. The apparatus then uses this enumeration value to identify the operating system kind of the computer. Once the operating system is identified, the apparatus reads this information to select a preset second keycode that corresponds to the identified operating system, with the second keycode being an ASCII code.
|
source:
|
How is the second keycode determined based on the operating system kind in the method described?<<<ENDU1>>>
|
The second keycode is determined by first connecting the non-keyboard apparatus to the computer to obtain enumeration information, which includes an enumeration value. The apparatus then uses this enumeration value to identify the operating system kind of the computer. Once the operating system is identified, the apparatus reads this information to select a preset second keycode that corresponds to the identified operating system, with the second keycode being an ASCII code. <<<ENDA1>>>
|
<|BOS|>How is the second keycode determined based on the operating system kind in the method described?
source:
1. A method for sending a keycode of a non-keyboard apparatus, comprising the steps of: (a) connecting the non-keyboard apparatus to a computer so as to perform device enumeration and generate enumeration information, wherein the enumeration information is recorded by the non-keyboard apparatus and includes an enumeration value; (b) identifying, according to the enumeration value, the kind of an operating system used by the computer, and recording the kind of the operating system by the non-keyboard apparatus; and (c) reading the kind of the operating system so as to determine a preset second keycode that matches the kind of the operating system, wherein the second keycode is an ASCII (American Standard Code for Information Interchange) code.<|EOS|><|BOS|>The second keycode is determined by first connecting the non-keyboard apparatus to the computer to obtain enumeration information, which includes an enumeration value. The apparatus then uses this enumeration value to identify the operating system kind of the computer. Once the operating system is identified, the apparatus reads this information to select a preset second keycode that corresponds to the identified operating system, with the second keycode being an ASCII code.<|EOS|>
|
9,461,433
|
2016-10-04
|
1. A light-emitting device comprising: a base; a light-emitting element held by the base; a lens held by the base and disposed above the light-emitting element, configured to condense light emitted from the light-emitting element; a first tubular member disposed on the base; a second tubular member fitted into the first tubular member; a holder allowed to be inserted into the second tubular member and thereby fitted into the second tubular member and having a through hole through which light condensed by the lens passes; and a light-transmitting member formed on the holder so as to block the through hole, the light-transmitting member having a rectangular bottom surface with a size larger than the through hole, wherein the second tubular member has a heat-dissipation part formed on and protruded from an outer side surface thereof, the holder has a structure made of a single member composed of an upper flange portion and a lower insertion fitting portion, the upper flange portion has a lower surface disposed on an upper surface of the second tubular member, and the lower insertion fitting portion of the holder extends up to at least a region where the heat dissipation part of the second tubular member is formed and has an outer side surface that is in contact with an inner side surface of the second tubular member.
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1. A light-emitting device comprising: a base; a light-emitting element held by the base; a lens held by the base and disposed above the light-emitting element, configured to condense light emitted from the light-emitting element; a first tubular member disposed on the base; a second tubular member fitted into the first tubular member; a holder allowed to be inserted into the second tubular member and thereby fitted into the second tubular member and having a through hole through which light condensed by the lens passes; and a light-transmitting member formed on the holder so as to block the through hole, the light-transmitting member having a rectangular bottom surface with a size larger than the through hole, wherein the second tubular member has a heat-dissipation part formed on and protruded from an outer side surface thereof, the holder has a structure made of a single member composed of an upper flange portion and a lower insertion fitting portion, the upper flange portion has a lower surface disposed on an upper surface of the second tubular member, and the lower insertion fitting portion of the holder extends up to at least a region where the heat dissipation part of the second tubular member is formed and has an outer side surface that is in contact with an inner side surface of the second tubular member.
| 1,335
|
What is the purpose of the heat-dissipation part on the second tubular member in the light-emitting device?
|
The heat-dissipation part on the second tubular member in the light-emitting device is designed to dissipate heat generated by the light-emitting element, preventing overheating and maintaining optimal performance. It is protruded from the outer side surface of the second tubular member and contacts the inner side surface of the second tubular member, which is part of the holder's lower insertion fitting portion, ensuring effective heat transfer from the holder to the second tubular member.
|
text:
|
What is the purpose of the heat-dissipation part on the second tubular member in the light-emitting device?<<<ENDU1>>>
|
The heat-dissipation part on the second tubular member in the light-emitting device is designed to dissipate heat generated by the light-emitting element, preventing overheating and maintaining optimal performance. It is protruded from the outer side surface of the second tubular member and contacts the inner side surface of the second tubular member, which is part of the holder's lower insertion fitting portion, ensuring effective heat transfer from the holder to the second tubular member. <<<ENDA1>>>
|
<|BOS|>What is the purpose of the heat-dissipation part on the second tubular member in the light-emitting device?
text:
1. A light-emitting device comprising: a base; a light-emitting element held by the base; a lens held by the base and disposed above the light-emitting element, configured to condense light emitted from the light-emitting element; a first tubular member disposed on the base; a second tubular member fitted into the first tubular member; a holder allowed to be inserted into the second tubular member and thereby fitted into the second tubular member and having a through hole through which light condensed by the lens passes; and a light-transmitting member formed on the holder so as to block the through hole, the light-transmitting member having a rectangular bottom surface with a size larger than the through hole, wherein the second tubular member has a heat-dissipation part formed on and protruded from an outer side surface thereof, the holder has a structure made of a single member composed of an upper flange portion and a lower insertion fitting portion, the upper flange portion has a lower surface disposed on an upper surface of the second tubular member, and the lower insertion fitting portion of the holder extends up to at least a region where the heat dissipation part of the second tubular member is formed and has an outer side surface that is in contact with an inner side surface of the second tubular member.<|EOS|><|BOS|>The heat-dissipation part on the second tubular member in the light-emitting device is designed to dissipate heat generated by the light-emitting element, preventing overheating and maintaining optimal performance. It is protruded from the outer side surface of the second tubular member and contacts the inner side surface of the second tubular member, which is part of the holder's lower insertion fitting portion, ensuring effective heat transfer from the holder to the second tubular member.<|EOS|>
|
8,508,147
|
2013-08-13
|
1. A dimmer circuit, comprising: a bleeder as a dummy load; a phase dimmer for generating a signal corresponding to an adjustment of the phase dimmer by a user; a phase detect circuit for detecting a phase angle of the signal; a pulse width modulation (PWM) circuit for generating a PWM signal to drive a light emitting diode (LED) device; and a programmable micro controller, coupled to the phase detect circuit, wherein the programmable micro controller receives the signal and the phase angle to determine pulse width of the PWM signal according to the phase angle and the programmable micro controller generates a control signal to turn on/off the bleeder according to the phase angle.
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1. A dimmer circuit, comprising: a bleeder as a dummy load; a phase dimmer for generating a signal corresponding to an adjustment of the phase dimmer by a user; a phase detect circuit for detecting a phase angle of the signal; a pulse width modulation (PWM) circuit for generating a PWM signal to drive a light emitting diode (LED) device; and a programmable micro controller, coupled to the phase detect circuit, wherein the programmable micro controller receives the signal and the phase angle to determine pulse width of the PWM signal according to the phase angle and the programmable micro controller generates a control signal to turn on/off the bleeder according to the phase angle.
| 689
|
What is the function of the programmable micro controller in the dimmer circuit?
|
The programmable micro controller in the dimmer circuit processes the phase angle signal from the phase detect circuit to calculate the appropriate pulse width for the PWM signal, which controls the LED brightness. It also generates control signals to manage the bleeder's on/off state based on the phase angle, ensuring efficient power regulation and user-adjustable dimming levels.
|
passage:
|
What is the function of the programmable micro controller in the dimmer circuit?<<<ENDU1>>>
|
The programmable micro controller in the dimmer circuit processes the phase angle signal from the phase detect circuit to calculate the appropriate pulse width for the PWM signal, which controls the LED brightness. It also generates control signals to manage the bleeder's on/off state based on the phase angle, ensuring efficient power regulation and user-adjustable dimming levels.<<<ENDA1>>>
|
<|BOS|>What is the function of the programmable micro controller in the dimmer circuit?
passage:
1. A dimmer circuit, comprising: a bleeder as a dummy load; a phase dimmer for generating a signal corresponding to an adjustment of the phase dimmer by a user; a phase detect circuit for detecting a phase angle of the signal; a pulse width modulation (PWM) circuit for generating a PWM signal to drive a light emitting diode (LED) device; and a programmable micro controller, coupled to the phase detect circuit, wherein the programmable micro controller receives the signal and the phase angle to determine pulse width of the PWM signal according to the phase angle and the programmable micro controller generates a control signal to turn on/off the bleeder according to the phase angle.<|EOS|><|BOS|>The programmable micro controller in the dimmer circuit processes the phase angle signal from the phase detect circuit to calculate the appropriate pulse width for the PWM signal, which controls the LED brightness. It also generates control signals to manage the bleeder's on/off state based on the phase angle, ensuring efficient power regulation and user-adjustable dimming levels.<|EOS|>
|
8,956,227
|
2015-02-17
|
1. A non-transitory computer-readable storage medium storing an image processing program for causing a computer of an image processing device to process images, the image processing program comprising instructions, when executed by the computer, configured to: acquire a captured image of a real-world subject with an imaging device; determine an imaging direction of a virtual camera arranged in a virtual space based on motion of the imaging device; locate a virtual object in the virtual space so that the virtual object surrounds and encloses the virtual camera; associate the captured image of the real-world subject to the virtual object located in the virtual space; determine a particular portion of a piece of information in accordance to the imaging direction, the piece of information being information on visual characteristics at each position of the virtual object; generate, in accordance with the virtual camera with the determined imaging direction, an image of the virtual space by adjusting visual characteristics of the virtual object with the associated captured image based on the determined particular portion of the piece of information; and cause a display device to display the generated image, wherein the image is generated on a real-time basis with acquisition of the captured image; wherein the acquired captured image is processed such that a portion of the virtual space is displayed in preference to the particular portion of the captured image.
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1. A non-transitory computer-readable storage medium storing an image processing program for causing a computer of an image processing device to process images, the image processing program comprising instructions, when executed by the computer, configured to: acquire a captured image of a real-world subject with an imaging device; determine an imaging direction of a virtual camera arranged in a virtual space based on motion of the imaging device; locate a virtual object in the virtual space so that the virtual object surrounds and encloses the virtual camera; associate the captured image of the real-world subject to the virtual object located in the virtual space; determine a particular portion of a piece of information in accordance to the imaging direction, the piece of information being information on visual characteristics at each position of the virtual object; generate, in accordance with the virtual camera with the determined imaging direction, an image of the virtual space by adjusting visual characteristics of the virtual object with the associated captured image based on the determined particular portion of the piece of information; and cause a display device to display the generated image, wherein the image is generated on a real-time basis with acquisition of the captured image; wherein the acquired captured image is processed such that a portion of the virtual space is displayed in preference to the particular portion of the captured image.
| 1,478
|
What does the image processing program do when it associates the captured image to the virtual object?
|
The image processing program associates the captured image with the virtual object by positioning the virtual object around the virtual camera in the virtual space, then uses the imaging direction determined from the device's motion to adjust the virtual object's visual characteristics based on specific information about the virtual object's visual traits. It generates a real-time image of the virtual space by integrating the captured image with the adjusted visual characteristics, prioritizing certain parts of the virtual space over the captured image.
|
document:
|
What does the image processing program do when it associates the captured image to the virtual object?<<<ENDU1>>>
|
The image processing program associates the captured image with the virtual object by positioning the virtual object around the virtual camera in the virtual space, then uses the imaging direction determined from the device's motion to adjust the virtual object's visual characteristics based on specific information about the virtual object's visual traits. It generates a real-time image of the virtual space by integrating the captured image with the adjusted visual characteristics, prioritizing certain parts of the virtual space over the captured image. <<<ENDA1>>>
|
<|BOS|>What does the image processing program do when it associates the captured image to the virtual object?
document:
1. A non-transitory computer-readable storage medium storing an image processing program for causing a computer of an image processing device to process images, the image processing program comprising instructions, when executed by the computer, configured to: acquire a captured image of a real-world subject with an imaging device; determine an imaging direction of a virtual camera arranged in a virtual space based on motion of the imaging device; locate a virtual object in the virtual space so that the virtual object surrounds and encloses the virtual camera; associate the captured image of the real-world subject to the virtual object located in the virtual space; determine a particular portion of a piece of information in accordance to the imaging direction, the piece of information being information on visual characteristics at each position of the virtual object; generate, in accordance with the virtual camera with the determined imaging direction, an image of the virtual space by adjusting visual characteristics of the virtual object with the associated captured image based on the determined particular portion of the piece of information; and cause a display device to display the generated image, wherein the image is generated on a real-time basis with acquisition of the captured image; wherein the acquired captured image is processed such that a portion of the virtual space is displayed in preference to the particular portion of the captured image.<|EOS|><|BOS|>The image processing program associates the captured image with the virtual object by positioning the virtual object around the virtual camera in the virtual space, then uses the imaging direction determined from the device's motion to adjust the virtual object's visual characteristics based on specific information about the virtual object's visual traits. It generates a real-time image of the virtual space by integrating the captured image with the adjusted visual characteristics, prioritizing certain parts of the virtual space over the captured image.<|EOS|>
|
9,373,033
|
2016-06-21
|
1. A computer-implemented image processing method, the computer including a processor and a memory operatively coupled to the processor, the method performed by the processor comprising: accessing image data representing a plurality of images of a plurality of vehicles; accessing a discriminative type-specific vehicle model calculated from training data representing a predefined vehicle attribute; processing, using the discriminative type-specific vehicle model, a portion of the image data to automatically detect a vehicle feature of at least one of the plurality of vehicles represented in at least one of the plurality of images based on the predefined vehicle attribute; and processing the portion of the image data to automatically generate vehicle data representing the detected vehicle feature.
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1. A computer-implemented image processing method, the computer including a processor and a memory operatively coupled to the processor, the method performed by the processor comprising: accessing image data representing a plurality of images of a plurality of vehicles; accessing a discriminative type-specific vehicle model calculated from training data representing a predefined vehicle attribute; processing, using the discriminative type-specific vehicle model, a portion of the image data to automatically detect a vehicle feature of at least one of the plurality of vehicles represented in at least one of the plurality of images based on the predefined vehicle attribute; and processing the portion of the image data to automatically generate vehicle data representing the detected vehicle feature.
| 806
|
What is the specific step in the method for processing image data to detect a vehicle feature using the discriminative type-specific vehicle model?
|
The specific step involves using the discriminative type-specific vehicle model to process a portion of the image data, automatically detecting a vehicle feature of at least one vehicle from the images based on the predefined vehicle attribute, and then generating vehicle data that represents the detected feature.
|
content:
|
What is the specific step in the method for processing image data to detect a vehicle feature using the discriminative type-specific vehicle model?<<<ENDU1>>>
|
The specific step involves using the discriminative type-specific vehicle model to process a portion of the image data, automatically detecting a vehicle feature of at least one vehicle from the images based on the predefined vehicle attribute, and then generating vehicle data that represents the detected feature.<<<ENDA1>>>
|
<|BOS|>What is the specific step in the method for processing image data to detect a vehicle feature using the discriminative type-specific vehicle model?
content:
1. A computer-implemented image processing method, the computer including a processor and a memory operatively coupled to the processor, the method performed by the processor comprising: accessing image data representing a plurality of images of a plurality of vehicles; accessing a discriminative type-specific vehicle model calculated from training data representing a predefined vehicle attribute; processing, using the discriminative type-specific vehicle model, a portion of the image data to automatically detect a vehicle feature of at least one of the plurality of vehicles represented in at least one of the plurality of images based on the predefined vehicle attribute; and processing the portion of the image data to automatically generate vehicle data representing the detected vehicle feature.<|EOS|><|BOS|>The specific step involves using the discriminative type-specific vehicle model to process a portion of the image data, automatically detecting a vehicle feature of at least one vehicle from the images based on the predefined vehicle attribute, and then generating vehicle data that represents the detected feature.<|EOS|>
|
8,621,421
|
2013-12-31
|
1. A method executed at least in part in a computing device for providing workflow visualization, the method comprising: executing a workflow; receiving a workflow definition; generating a new workflow definition that includes mappings to a static diagram visualizing the workflow; receiving workflow execution state information; loading graphical elements for annotating the static diagram based on the workflow execution state information, wherein the static diagram includes shapes and connectors constructed to represent workflow activities and activity flows described in the workflow definition; enabling a script within a rendering page for rendering the workflow visualization by overlaying the annotations on the static diagram; including one of: a textual visualization and a graphical visualization within the workflow visualization; presenting a list of workflow activities in a chronological order through the textual visualization wherein each entry in the list includes at least two of: a workflow activity, a date of the workflow activity, an identifier of a user associated with the workflow activity, and description of the workflow activity; and presenting the workflow as a flowchart including a start of the workflow and an end of the workflow through the graphical visualization.
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1. A method executed at least in part in a computing device for providing workflow visualization, the method comprising: executing a workflow; receiving a workflow definition; generating a new workflow definition that includes mappings to a static diagram visualizing the workflow; receiving workflow execution state information; loading graphical elements for annotating the static diagram based on the workflow execution state information, wherein the static diagram includes shapes and connectors constructed to represent workflow activities and activity flows described in the workflow definition; enabling a script within a rendering page for rendering the workflow visualization by overlaying the annotations on the static diagram; including one of: a textual visualization and a graphical visualization within the workflow visualization; presenting a list of workflow activities in a chronological order through the textual visualization wherein each entry in the list includes at least two of: a workflow activity, a date of the workflow activity, an identifier of a user associated with the workflow activity, and description of the workflow activity; and presenting the workflow as a flowchart including a start of the workflow and an end of the workflow through the graphical visualization.
| 1,301
|
What is the process for generating a new workflow definition that includes mappings to a static diagram visualizing the workflow?
|
The process involves creating a new workflow definition that maps to a static diagram by first executing the workflow and receiving its definition. The system then generates the workflow definition with mappings to a static diagram, which visually represents workflow activities and flows. Graphical elements are loaded to annotate the diagram based on execution state data, allowing annotations to overlay on the static diagram. The workflow visualization includes both textual and graphical elements, such as a chronological list of activities with details like dates, user identifiers, and descriptions, and a flowchart showing the workflow's start and end points.
|
corpus:
|
What is the process for generating a new workflow definition that includes mappings to a static diagram visualizing the workflow? <<<ENDU1>>>
|
The process involves creating a new workflow definition that maps to a static diagram by first executing the workflow and receiving its definition. The system then generates the workflow definition with mappings to a static diagram, which visually represents workflow activities and flows. Graphical elements are loaded to annotate the diagram based on execution state data, allowing annotations to overlay on the static diagram. The workflow visualization includes both textual and graphical elements, such as a chronological list of activities with details like dates, user identifiers, and descriptions, and a flowchart showing the workflow's start and end points. <<<ENDA1>>>
|
<|BOS|>What is the process for generating a new workflow definition that includes mappings to a static diagram visualizing the workflow?
corpus:
1. A method executed at least in part in a computing device for providing workflow visualization, the method comprising: executing a workflow; receiving a workflow definition; generating a new workflow definition that includes mappings to a static diagram visualizing the workflow; receiving workflow execution state information; loading graphical elements for annotating the static diagram based on the workflow execution state information, wherein the static diagram includes shapes and connectors constructed to represent workflow activities and activity flows described in the workflow definition; enabling a script within a rendering page for rendering the workflow visualization by overlaying the annotations on the static diagram; including one of: a textual visualization and a graphical visualization within the workflow visualization; presenting a list of workflow activities in a chronological order through the textual visualization wherein each entry in the list includes at least two of: a workflow activity, a date of the workflow activity, an identifier of a user associated with the workflow activity, and description of the workflow activity; and presenting the workflow as a flowchart including a start of the workflow and an end of the workflow through the graphical visualization.<|EOS|><|BOS|>The process involves creating a new workflow definition that maps to a static diagram by first executing the workflow and receiving its definition. The system then generates the workflow definition with mappings to a static diagram, which visually represents workflow activities and flows. Graphical elements are loaded to annotate the diagram based on execution state data, allowing annotations to overlay on the static diagram. The workflow visualization includes both textual and graphical elements, such as a chronological list of activities with details like dates, user identifiers, and descriptions, and a flowchart showing the workflow's start and end points.<|EOS|>
|
9,229,528
|
2016-01-05
|
1. An input apparatus, comprising: a plurality of blocks releasably connectable to each other and each block including at least one of: a position acquisition unit provided with a mechanism to acquire an exact position in a three-dimensional space; a connecting part identification unit configured to acquire a position to which another block is connected; a sensor measurement acquisition unit configured to acquire a measurement of an embedded sensor; an inclination identification unit configured to acquire an inclination; an inter-block communication unit configured to transmit or receive signal to or from one or more of the plurality of blocks via a connecting part, where one or more of the plurality of blocks do not have an inter-block communication unit; and an information transmitting unit configured to transmit information acquired internally to an information processor that uses a signal from the input apparatus as an input value to perform information processing in accordance with the position, posture, and shape of the input apparatus, and the information transmitting unit is configured to transmit, to the information processor, pieces of information acquired within and transmitted from one or more of the plurality of blocks directly or indirectly connected to the block comprising the information transmitting unit, wherein any of the plurality of blocks that are provided with the inter-block communication unit and are connected to the one or more blocks that do not have the inter-block communication unit transmit internally-acquired information directly or indirectly to any of the plurality of blocks that have the information transmitting unit.
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1. An input apparatus, comprising: a plurality of blocks releasably connectable to each other and each block including at least one of: a position acquisition unit provided with a mechanism to acquire an exact position in a three-dimensional space; a connecting part identification unit configured to acquire a position to which another block is connected; a sensor measurement acquisition unit configured to acquire a measurement of an embedded sensor; an inclination identification unit configured to acquire an inclination; an inter-block communication unit configured to transmit or receive signal to or from one or more of the plurality of blocks via a connecting part, where one or more of the plurality of blocks do not have an inter-block communication unit; and an information transmitting unit configured to transmit information acquired internally to an information processor that uses a signal from the input apparatus as an input value to perform information processing in accordance with the position, posture, and shape of the input apparatus, and the information transmitting unit is configured to transmit, to the information processor, pieces of information acquired within and transmitted from one or more of the plurality of blocks directly or indirectly connected to the block comprising the information transmitting unit, wherein any of the plurality of blocks that are provided with the inter-block communication unit and are connected to the one or more blocks that do not have the inter-block communication unit transmit internally-acquired information directly or indirectly to any of the plurality of blocks that have the information transmitting unit.
| 1,679
|
What is the function of the information transmitting unit in the input apparatus?
|
The information transmitting unit in the input apparatus is responsible for transmitting internally acquired information to an information processor. It sends data from one or more blocks connected to it, either directly or indirectly, including details about position, posture, and shape. This unit ensures that the information processor receives accurate input values based on the apparatus's state, even when some blocks lack inter-block communication capabilities.
|
text:
|
What is the function of the information transmitting unit in the input apparatus?<<<ENDU1>>>
|
The information transmitting unit in the input apparatus is responsible for transmitting internally acquired information to an information processor. It sends data from one or more blocks connected to it, either directly or indirectly, including details about position, posture, and shape. This unit ensures that the information processor receives accurate input values based on the apparatus's state, even when some blocks lack inter-block communication capabilities.<<<ENDA1>>>
|
<|BOS|>What is the function of the information transmitting unit in the input apparatus?
text:
1. An input apparatus, comprising: a plurality of blocks releasably connectable to each other and each block including at least one of: a position acquisition unit provided with a mechanism to acquire an exact position in a three-dimensional space; a connecting part identification unit configured to acquire a position to which another block is connected; a sensor measurement acquisition unit configured to acquire a measurement of an embedded sensor; an inclination identification unit configured to acquire an inclination; an inter-block communication unit configured to transmit or receive signal to or from one or more of the plurality of blocks via a connecting part, where one or more of the plurality of blocks do not have an inter-block communication unit; and an information transmitting unit configured to transmit information acquired internally to an information processor that uses a signal from the input apparatus as an input value to perform information processing in accordance with the position, posture, and shape of the input apparatus, and the information transmitting unit is configured to transmit, to the information processor, pieces of information acquired within and transmitted from one or more of the plurality of blocks directly or indirectly connected to the block comprising the information transmitting unit, wherein any of the plurality of blocks that are provided with the inter-block communication unit and are connected to the one or more blocks that do not have the inter-block communication unit transmit internally-acquired information directly or indirectly to any of the plurality of blocks that have the information transmitting unit.<|EOS|><|BOS|>The information transmitting unit in the input apparatus is responsible for transmitting internally acquired information to an information processor. It sends data from one or more blocks connected to it, either directly or indirectly, including details about position, posture, and shape. This unit ensures that the information processor receives accurate input values based on the apparatus's state, even when some blocks lack inter-block communication capabilities.<|EOS|>
|
9,470,577
|
2016-10-18
|
1. A device comprising: a UV sensing unit comprising a circuitry for measuring irradiating UV intensity; and a mobile computing unit calculating exposed UV dose and cutaneous vitamin D generation for a user of the device based on the measured irradiating UV intensity adjusted by a predetermined scaling factor corresponding to a location of the UV sensing unit relative to an exposed body surface of the user, wherein the mobile computing unit is adapted to calculate and display an output parameter that quantifies a degree of balance between a risk of UV exposure and a benefit of UV exposure.
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1. A device comprising: a UV sensing unit comprising a circuitry for measuring irradiating UV intensity; and a mobile computing unit calculating exposed UV dose and cutaneous vitamin D generation for a user of the device based on the measured irradiating UV intensity adjusted by a predetermined scaling factor corresponding to a location of the UV sensing unit relative to an exposed body surface of the user, wherein the mobile computing unit is adapted to calculate and display an output parameter that quantifies a degree of balance between a risk of UV exposure and a benefit of UV exposure.
| 596
|
What does the mobile computing unit calculate based on the measured UV intensity and the scaling factor?
|
The mobile computing unit calculates the exposed UV dose and cutaneous vitamin D generation for the user based on the measured UV intensity adjusted by a scaling factor that accounts for the UV sensing unit's location relative to the user's exposed body surface.
|
text:
|
What does the mobile computing unit calculate based on the measured UV intensity and the scaling factor? <<<ENDU1>>>
|
The mobile computing unit calculates the exposed UV dose and cutaneous vitamin D generation for the user based on the measured UV intensity adjusted by a scaling factor that accounts for the UV sensing unit's location relative to the user's exposed body surface. <<<ENDA1>>>
|
<|BOS|>What does the mobile computing unit calculate based on the measured UV intensity and the scaling factor?
text:
1. A device comprising: a UV sensing unit comprising a circuitry for measuring irradiating UV intensity; and a mobile computing unit calculating exposed UV dose and cutaneous vitamin D generation for a user of the device based on the measured irradiating UV intensity adjusted by a predetermined scaling factor corresponding to a location of the UV sensing unit relative to an exposed body surface of the user, wherein the mobile computing unit is adapted to calculate and display an output parameter that quantifies a degree of balance between a risk of UV exposure and a benefit of UV exposure.<|EOS|><|BOS|>The mobile computing unit calculates the exposed UV dose and cutaneous vitamin D generation for the user based on the measured UV intensity adjusted by a scaling factor that accounts for the UV sensing unit's location relative to the user's exposed body surface.<|EOS|>
|
9,849,270
|
2017-12-26
|
1. An adhesive composite dressing comprising: an anchor member comprising a first skin-contact adhesive; a target member comprising an opening adapted to enable skin treatment; a folding member comprising a drug reservoir and a second skin-contact adhesive, wherein the folding member is attached to the anchor member through a hinge defined by a line of attachment that is not contiguous with an edge of the anchor member; and an impermeable barrier between the drug reservoir and the second skin-contact adhesive.
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
|
1. An adhesive composite dressing comprising: an anchor member comprising a first skin-contact adhesive; a target member comprising an opening adapted to enable skin treatment; a folding member comprising a drug reservoir and a second skin-contact adhesive, wherein the folding member is attached to the anchor member through a hinge defined by a line of attachment that is not contiguous with an edge of the anchor member; and an impermeable barrier between the drug reservoir and the second skin-contact adhesive.
| 515
|
What is the function of the impermeable barrier between the drug reservoir and the second skin-contact adhesive in the adhesive composite dressing?
|
The impermeable barrier in the adhesive composite dressing prevents the drug reservoir from leaking or contaminating the second skin-contact adhesive, ensuring the integrity of the drug and maintaining the adhesive's effectiveness.
|
source text:
|
What is the function of the impermeable barrier between the drug reservoir and the second skin-contact adhesive in the adhesive composite dressing?<<<ENDU1>>>
|
The impermeable barrier in the adhesive composite dressing prevents the drug reservoir from leaking or contaminating the second skin-contact adhesive, ensuring the integrity of the drug and maintaining the adhesive's effectiveness. <<<ENDA1>>>
|
<|BOS|>What is the function of the impermeable barrier between the drug reservoir and the second skin-contact adhesive in the adhesive composite dressing?
source text:
1. An adhesive composite dressing comprising: an anchor member comprising a first skin-contact adhesive; a target member comprising an opening adapted to enable skin treatment; a folding member comprising a drug reservoir and a second skin-contact adhesive, wherein the folding member is attached to the anchor member through a hinge defined by a line of attachment that is not contiguous with an edge of the anchor member; and an impermeable barrier between the drug reservoir and the second skin-contact adhesive.<|EOS|><|BOS|>The impermeable barrier in the adhesive composite dressing prevents the drug reservoir from leaking or contaminating the second skin-contact adhesive, ensuring the integrity of the drug and maintaining the adhesive's effectiveness.<|EOS|>
|
8,432,689
|
2013-04-30
|
1. A computer chassis, comprising: a first chassis retainer on one side of the computer chassis and defining an opening, the first chassis retainer including a first flexible flange biased away from the opening, wherein the first flexible flange includes a protruding portion that extends toward the opening; wherein the protruding portion is configured to flex inwardly in relation to the computer chassis; and wherein the first flexible flange is configured to be urged outwardly in relation to the computer chassis such that the protruding portion extends through the opening.
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 1
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
1. A computer chassis, comprising: a first chassis retainer on one side of the computer chassis and defining an opening, the first chassis retainer including a first flexible flange biased away from the opening, wherein the first flexible flange includes a protruding portion that extends toward the opening; wherein the protruding portion is configured to flex inwardly in relation to the computer chassis; and wherein the first flexible flange is configured to be urged outwardly in relation to the computer chassis such that the protruding portion extends through the opening.
| 579
|
What is the function of the protruding portion on the first flexible flange in the computer chassis?
|
The protruding portion on the first flexible flange serves to flex inwardly toward the opening in the first chassis retainer, allowing the protruding portion to extend through the opening while the first flexible flange is urged outwardly against the computer chassis.
|
source text:
|
What is the function of the protruding portion on the first flexible flange in the computer chassis?<<<ENDU1>>>
|
The protruding portion on the first flexible flange serves to flex inwardly toward the opening in the first chassis retainer, allowing the protruding portion to extend through the opening while the first flexible flange is urged outwardly against the computer chassis. <<<ENDA1>>>
|
<|BOS|>What is the function of the protruding portion on the first flexible flange in the computer chassis?
source text:
1. A computer chassis, comprising: a first chassis retainer on one side of the computer chassis and defining an opening, the first chassis retainer including a first flexible flange biased away from the opening, wherein the first flexible flange includes a protruding portion that extends toward the opening; wherein the protruding portion is configured to flex inwardly in relation to the computer chassis; and wherein the first flexible flange is configured to be urged outwardly in relation to the computer chassis such that the protruding portion extends through the opening.<|EOS|><|BOS|>The protruding portion on the first flexible flange serves to flex inwardly toward the opening in the first chassis retainer, allowing the protruding portion to extend through the opening while the first flexible flange is urged outwardly against the computer chassis.<|EOS|>
|
README.md exists but content is empty.
- Downloads last month
- 29