Dataset Viewer
The dataset viewer is not available for this subset.
Cannot get the split names for the config 'default' of the dataset.
Exception:    SplitsNotFoundError
Message:      The split names could not be parsed from the dataset config.
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 289, in get_dataset_config_info
                  for split_generator in builder._split_generators(
                                         ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/hdf5/hdf5.py", line 64, in _split_generators
                  with h5py.File(first_file, "r") as h5:
                       ^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/h5py/_hl/files.py", line 564, in __init__
                  fid = make_fid(name, mode, userblock_size, fapl, fcpl, swmr=swmr)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/h5py/_hl/files.py", line 238, in make_fid
                  fid = h5f.open(name, flags, fapl=fapl)
                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "h5py/_objects.pyx", line 56, in h5py._objects.with_phil.wrapper
                File "h5py/_objects.pyx", line 57, in h5py._objects.with_phil.wrapper
                File "h5py/h5f.pyx", line 102, in h5py.h5f.open
              FileNotFoundError: [Errno 2] Unable to synchronously open file (unable to open file: name = 'hf://datasets/Pi3DET/data@6e4057a349285fb7fe3e2f721eee4699d6b24132/processed/Drone/Outdoor_Day/fast_flight_2/cut_data.h5', errno = 2, error message = 'No such file or directory', flags = 0, o_flags = 0)
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/split_names.py", line 65, in compute_split_names_from_streaming_response
                  for split in get_dataset_split_names(
                               ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 343, in get_dataset_split_names
                  info = get_dataset_config_info(
                         ^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 294, in get_dataset_config_info
                  raise SplitsNotFoundError("The split names could not be parsed from the dataset config.") from err
              datasets.inspect.SplitsNotFoundError: The split names could not be parsed from the dataset config.

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Perspective-Invariant 3D Object Detection

Ao Liang*,1,2,3,4  Lingdong Kong*,1  Dongyue Lu*,1  Youquan Liu5  Jian Fang4  Huaici Zhao4  Wei Tsang Ooi1
1National University of Singapore    2University of Chinese Academy of Sciences   
3Key Laboratory of Opto-Electronic Information Processing, Chinese Academy of Sciences   
4Shenyang Institute of Automation, Chinese Academy of Sciences 5Fudan University
*Equally contributed to this work   

Teaser

Updates

Todo

Since the Pi3DET dataset is being used for Track 5: Cross-Platform 3D Object Detection of the RoboSense Challenge at IROS 2025, in the interest of fairness we are temporarily not releasing all of the data and annotations. If you’re interested, we have open‑sourced a subset of the data and code—please refer to the track details for more information.

  • Release Phase 1 dataset of the IROS Track, which is KITTI-like single-framee format.
  • Release Phase 2 dataset of the IROS Track, which is KITTI-like single-framee format.
  • Release all data of Pi3DET, which has temporal information.

Download

The Track 5 dataset follows the KITTI format. Each sample consists of:

  • A front-view RGB image
  • A LiDAR point cloud covering the camera’s field of view
  • Calibration parameters
  • 3D bounding-box annotations (for training)

    Calibration and annotations are packaged together in .pkl files.

We use the same training set (vehicle platform) for both phases, but different validation sets. The full dataset is hosted on Hugging Face:

robosense/track5-cross-platform-3d-object-detection

  1. Download the dataset
    python tools/load_dataset.py $USER_DEFINE_OUTPUT_PATH
    
  2. Link data into the project
     # Create target directory
     mkdir -p data/pi3det
    
     # Link the training split
     ln -s $USER_DEFINE_OUTPUT_PATH/track5-cross-platform-3d-object-detection/phase12_vehicle_training/training \
         data/pi3det/training
    
     # Link the validation split for Phase 1 (Drone)
     ln -s $USER_DEFINE_OUTPUT_PATH/track5-cross-platform-3d-object-detection/phase1_drone_validation/validation \
         data/pi3det/validation
    
     # Link the .pkl info files
     ln -s $USER_DEFINE_OUTPUT_PATH/track5-cross-platform-3d-object-detection/phase12_vehicle_training/training/pi3det_infos_train.pkl \
         data/pi3det/pi3det_infos_train.pkl
     ln -s $USER_DEFINE_OUTPUT_PATH/track5-cross-platform-3d-object-detection/phase1_drone_validation/validation/pi3det_infos_val.pkl \
         data/pi3det/pi3det_infos_val.pkl
    
  3. Verify your directory structure
    After linking, your data/ folder should look like this:
     data/
     └── pi3det/
         ├── training/
         │   ├── image/
         │   │   ├── 0000000.jpg
         │   │   └── 0000001.jpg
         │   └── point_cloud/
         │       ├── 0000000.bin
         │       └── 0000001.bin
         ├── validation/
         │   ├── image/
         │   │   ├── 0000000.jpg
         │   │   └── 0000001.jpg
         │   └── point_cloud/
         │       ├── 0000000.bin
         │       └── 0000001.bin
         ├── pi3det_infos_train.pkl
         └── pi3det_infos_val.pkl
    

Pi3DET Dataset

Detailed statistic information

Platform Condition Sequence # of Frames # of Points (M) # of Vehicles # of Pedestrians
Vehicle (8) Daytime (4) city_hall 2,982 26.61 19,489 12,199
penno_big_loop 3,151 33.29 17,240 1,886
rittenhouse 3,899 49.36 11,056 12,003
ucity_small_loop 6,746 67.49 34,049 34,346
Nighttime (4) city_hall 2,856 26.16 12,655 5,492
penno_big_loop 3,291 38.04 8,068 106
rittenhouse 4,135 52.68 11,103 14,315
ucity_small_loop 5,133 53.32 18,251 8,639
Summary (Vehicle) 32,193 346.95 131,911 88,986
Drone (7) Daytime (4) penno_parking_1 1,125 8.69 6,075 115
penno_parking_2 1,086 8.55 5,896 340
penno_plaza 678 5.60 721 65
penno_trees 1,319 11.58 657 160
Nighttime (3) high_beams 674 5.51 578 211
penno_parking_1 1,030 9.42 524 151
penno_parking_2 1,140 10.12 83 230
Summary (Drone) 7,052 59.47 14,534 1,272
Quadruped (10) Daytime (8) art_plaza_loop 1,446 14.90 0 3,579
penno_short_loop 1,176 14.68 3,532 89
rocky_steps 1,535 14.42 0 5,739
skatepark_1 661 12.21 0 893
skatepark_2 921 8.47 0 916
srt_green_loop 639 9.23 1,349 285
srt_under_bridge_1 2,033 28.95 0 1,432
srt_under_bridge_2 1,813 25.85 0 1,463
Nighttime (2) penno_plaza_lights 755 11.25 197 52
penno_short_loop 1,321 16.79 904 103
Summary (Quadruped) 12,300 156.75 5,982 14,551
All Three Platforms (25) Summary (All) 51,545 563.17 152,427 104,809

Examples

Teaser Teaser Teaser

Examples

Teaser Teaser Teaser
Downloads last month
17