File size: 12,416 Bytes
084d74a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import os
import sys
from typing import Any, Dict, Generator, ItemsView, List, Tuple

import cv2
import numpy as np
import torch
from PIL import Image

GSA_PATH = "/mnt/prev_nas/qhy_1/GenSpace/osdsynth/external/Grounded-Segment-Anything"
sys.path.append(GSA_PATH)

from segment_anything.segment_anything import SamAutomaticMaskGenerator, SamPredictor, sam_hq_model_registry, sam_model_registry

# Segment-Anything checkpoint
SAM_ENCODER_VERSION = "vit_h"
SAM_CHECKPOINT_PATH = os.path.join(GSA_PATH, "./sam_vit_h_4b8939.pth")

# Segment-Anything checkpoint
SAM_HQ_ENCODER_VERSION = "vit_h"
SAM_HQ_CHECKPOINT_PATH = os.path.join(GSA_PATH, "./sam_hq_vit_h.pth")

# Prompting SAM with detected boxes
def get_sam_segmentation_from_xyxy(sam_predictor: SamPredictor, image: np.ndarray, xyxy: np.ndarray) -> np.ndarray:
    sam_predictor.set_image(image)
    result_masks = []
    for box in xyxy:
        masks, scores, logits = sam_predictor.predict(box=box, multimask_output=True)
        index = np.argmax(scores)
        result_masks.append(masks[index])
    return np.array(result_masks)


def get_sam_predictor(variant: str, device: str | int) -> SamPredictor:
    if variant == "sam":
        sam = sam_model_registry[SAM_ENCODER_VERSION](checkpoint=SAM_CHECKPOINT_PATH)
        sam.to(device)
        sam_predictor = SamPredictor(sam)
        return sam_predictor

    if variant == "sam-hq":
        print("Using SAM-HQ")
        sam = sam_hq_model_registry[SAM_HQ_ENCODER_VERSION](checkpoint=SAM_HQ_CHECKPOINT_PATH)
        sam.to(device)
        sam_predictor = SamPredictor(sam)
        return sam_predictor

    else:
        raise NotImplementedError


def get_sam_mask_generator(variant: str, device: str | int) -> SamAutomaticMaskGenerator:
    if variant == "sam":
        sam = sam_model_registry[SAM_ENCODER_VERSION](checkpoint=SAM_CHECKPOINT_PATH)
        sam.to(device)
        mask_generator = SamAutomaticMaskGenerator(
            model=sam,
            points_per_side=12,
            points_per_batch=144,
            pred_iou_thresh=0.88,
            stability_score_thresh=0.95,
            crop_n_layers=0,
            min_mask_region_area=100,
        )
        return mask_generator
    elif variant == "fastsam":
        raise NotImplementedError
    else:
        raise NotImplementedError


def convert_detections_to_list(detections_dict, classes):
    detection_list = []
    for i in range(len(detections_dict["xyxy"])):
        detection = {
            "class_name": classes[detections_dict["class_id"][i]],  # Lookup class name using class_id
            "xyxy": detections_dict["xyxy"][i],  # Assuming detections.xyxy is a numpy array
            "confidence": detections_dict["confidence"][i].item(),  # Convert numpy scalar to Python scalar
            "class_id": detections_dict["class_id"][i].item(),
            "box_area": detections_dict["box_area"][i].item(),
            "mask": detections_dict["mask"][i],
            "subtracted_mask": detections_dict["subtracted_mask"][i],
            "rle": detections_dict["rle"][i],
            "area": detections_dict["area"][i],
        }
        detection_list.append(detection)
    return detection_list


def convert_detections_to_dict(detections, classes, image_crops=None, image_feats=None, text_feats=None):
    # Convert the detections to a dict. The elements are in np.array
    results = {
        "xyxy": detections.xyxy,
        "confidence": detections.confidence,
        "class_id": detections.class_id,
        "box_area": detections.box_area,
        "mask": detections.mask,
        "area": detections.area,
        "classes": classes,
    }
    return results


def mask_subtract_contained(xyxy: np.ndarray, mask: np.ndarray, th1=0.8, th2=0.7):
    """Compute the containing relationship between all pair of bounding boxes. For each mask, subtract the mask of
    bounding boxes that are contained by it.

    Args:
        xyxy: (N, 4), in (x1, y1, x2, y2) format
        mask: (N, H, W), binary mask
        th1: float, threshold for computing intersection over box1
        th2: float, threshold for computing intersection over box2

    Returns:
        mask_sub: (N, H, W), binary mask
    """
    N = xyxy.shape[0]  # number of boxes

    # Get areas of each xyxy
    areas = (xyxy[:, 2] - xyxy[:, 0]) * (xyxy[:, 3] - xyxy[:, 1])  # (N,)

    # Compute intersection boxes
    lt = np.maximum(xyxy[:, None, :2], xyxy[None, :, :2])  # left-top points (N, N, 2)
    rb = np.minimum(xyxy[:, None, 2:], xyxy[None, :, 2:])  # right-bottom points (N, N, 2)

    inter = (rb - lt).clip(min=0)  # intersection sizes (dx, dy), if no overlap, clamp to zero (N, N, 2)

    # Compute areas of intersection boxes
    inter_areas = inter[:, :, 0] * inter[:, :, 1]  # (N, N)

    inter_over_box1 = inter_areas / areas[:, None]  # (N, N)
    # inter_over_box2 = inter_areas / areas[None, :] # (N, N)
    inter_over_box2 = inter_over_box1.T  # (N, N)

    # if the intersection area is smaller than th2 of the area of box1,
    # and the intersection area is larger than th1 of the area of box2,
    # then box2 is considered contained by box1
    contained = (inter_over_box1 < th2) & (inter_over_box2 > th1)  # (N, N)
    contained_idx = contained.nonzero()  # (num_contained, 2)

    mask_sub = mask.copy()  # (N, H, W)
    # mask_sub[contained_idx[0]] = mask_sub[contained_idx[0]] & (~mask_sub[contained_idx[1]])
    for i in range(len(contained_idx[0])):
        mask_sub[contained_idx[0][i]] = mask_sub[contained_idx[0][i]] & (~mask_sub[contained_idx[1][i]])

    return mask_sub, contained


def filter_detections(cfg, detections_dict: dict, image: np.ndarray):
    # If no detection at all
    if len(detections_dict["xyxy"]) == 0:
        return detections_dict

    # Filter out the objects based on various criteria
    idx_to_keep = []
    for obj_idx in range(len(detections_dict["xyxy"])):
        class_name = detections_dict["classes"][detections_dict["class_id"][obj_idx]]

        # Skip masks that are too small
        if detections_dict["mask"][obj_idx].sum() < max(cfg.mask_area_threshold, 10):
            print(f"Skipping {class_name} mask with too few points")
            continue

        # Skip the BG classes
        if cfg.skip_bg and class_name in cfg.bg_classes:
            print(f"Skipping {class_name} as it is a background class")
            continue

        # Skip the non-background boxes that are too large
        if class_name not in cfg.bg_classes:
            x1, y1, x2, y2 = detections_dict["xyxy"][obj_idx]
            bbox_area = (x2 - x1) * (y2 - y1)
            image_area = image.shape[0] * image.shape[1]
            if bbox_area > cfg.max_bbox_area_ratio * image_area:
                print(f"Skipping {class_name} with area {bbox_area} > {cfg.max_bbox_area_ratio} * {image_area}")
                continue

        # Skip masks with low confidence
        if detections_dict["confidence"][obj_idx] < cfg.mask_conf_threshold:
            print(
                f"Skipping {class_name} with confidence {detections_dict['confidence'][obj_idx]} < {cfg.mask_conf_threshold}"
            )
            continue

        idx_to_keep.append(obj_idx)

    for k in detections_dict.keys():
        if isinstance(detections_dict[k], str) or k == "classes":  # Captions
            continue
        elif isinstance(detections_dict[k], list):
            detections_dict[k] = [detections_dict[k][i] for i in idx_to_keep]
        elif isinstance(detections_dict[k], np.ndarray):
            detections_dict[k] = detections_dict[k][idx_to_keep]
        else:
            raise NotImplementedError(f"Unhandled type {type(detections_dict[k])}")

    return detections_dict


def sort_detections_by_area(detections_dict):
    # Sort the detections by area, use negative to sort from large to small
    sorted_indices = np.argsort(-detections_dict["area"])
    for key in detections_dict.keys():
        if isinstance(detections_dict[key], np.ndarray):  # Check to ensure it's an array
            detections_dict[key] = detections_dict[key][sorted_indices]
    return detections_dict


def post_process_mask(detections_dict):
    sam_masks = torch.tensor(detections_dict["subtracted_mask"])
    uncompressed_mask_rles = mask_to_rle_pytorch(sam_masks)
    rle_masks_list = [coco_encode_rle(uncompressed_mask_rles[i]) for i in range(len(uncompressed_mask_rles))]
    detections_dict["rle"] = rle_masks_list
    return detections_dict


def crop_image_and_mask(image: Image, mask: np.ndarray, x1: int, y1: int, x2: int, y2: int, padding: int = 0):
    """Crop the image and mask with some padding.

    I made a single function that crops both the image and the mask at the same time because I was getting shape
    mismatches when I cropped them separately.This way I can check that they are the same shape.
    """

    image = np.array(image)
    # Verify initial dimensions
    if image.shape[:2] != mask.shape:
        print(f"Initial shape mismatch: Image shape {image.shape} != Mask shape {mask.shape}")
        return None, None

    # Define the cropping coordinates
    x1 = max(0, x1 - padding)
    y1 = max(0, y1 - padding)
    x2 = min(image.shape[1], x2 + padding)
    y2 = min(image.shape[0], y2 + padding)
    # round the coordinates to integers
    x1, y1, x2, y2 = round(x1), round(y1), round(x2), round(y2)

    # Crop the image and the mask
    image_crop = image[y1:y2, x1:x2]
    mask_crop = mask[y1:y2, x1:x2]

    # Verify cropped dimensions
    if image_crop.shape[:2] != mask_crop.shape:
        print(
            "Cropped shape mismatch: Image crop shape {} != Mask crop shape {}".format(
                image_crop.shape, mask_crop.shape
            )
        )
        return None, None

    # convert the image back to a pil image
    image_crop = Image.fromarray(image_crop)

    return image_crop, mask_crop


def crop_detections_with_xyxy(cfg, image, detections_list):
    for idx, detection in enumerate(detections_list):
        x1, y1, x2, y2 = detection["xyxy"]
        image_crop, mask_crop = crop_image_and_mask(image, detection["mask"], x1, y1, x2, y2, padding=10)
        if cfg.masking_option == "blackout":
            image_crop_modified = blackout_nonmasked_area(image_crop, mask_crop)
        elif cfg.masking_option == "red_outline":
            image_crop_modified = draw_red_outline(image_crop, mask_crop)
        else:
            image_crop_modified = image_crop  # No modification
        detections_list[idx]["image_crop"] = image_crop
        detections_list[idx]["mask_crop"] = mask_crop
        detections_list[idx]["image_crop_modified"] = image_crop_modified
    return detections_list


def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
    """
    Encodes masks to an uncompressed RLE, in the format expected by
    pycoco tools.
    """
    # Put in fortran order and flatten h,w
    b, h, w = tensor.shape
    tensor = tensor.permute(0, 2, 1).flatten(1)

    # Compute change indices
    diff = tensor[:, 1:] ^ tensor[:, :-1]
    change_indices = diff.nonzero()

    # Encode run length
    out = []
    for i in range(b):
        cur_idxs = change_indices[change_indices[:, 0] == i, 1]
        cur_idxs = torch.cat(
            [
                torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
                cur_idxs + 1,
                torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
            ]
        )
        btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
        counts = [] if tensor[i, 0] == 0 else [0]
        counts.extend(btw_idxs.detach().cpu().tolist())
        out.append({"size": [h, w], "counts": counts})
    return out


def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
    """Compute a binary mask from an uncompressed RLE."""
    h, w = rle["size"]
    mask = np.empty(h * w, dtype=bool)
    idx = 0
    parity = False
    for count in rle["counts"]:
        mask[idx : idx + count] = parity
        idx += count
        parity ^= True
    mask = mask.reshape(w, h)
    return mask.transpose()  # Put in C order


def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
    from pycocotools import mask as mask_utils  # type: ignore

    h, w = uncompressed_rle["size"]
    rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
    rle["counts"] = rle["counts"].decode("utf-8")  # Necessary to serialize with json
    return rle