|
|
--- |
|
|
dataset_info: |
|
|
features: |
|
|
- name: law_code |
|
|
dtype: string |
|
|
- name: law_name |
|
|
dtype: string |
|
|
- name: section_num |
|
|
dtype: string |
|
|
- name: section_content |
|
|
dtype: string |
|
|
- name: reference |
|
|
list: |
|
|
- name: include |
|
|
dtype: bool |
|
|
- name: law_name |
|
|
dtype: string |
|
|
- name: section_num |
|
|
dtype: string |
|
|
splits: |
|
|
- name: ccl |
|
|
num_bytes: 8145015 |
|
|
num_examples: 5127 |
|
|
download_size: 1777237 |
|
|
dataset_size: 8145015 |
|
|
configs: |
|
|
- config_name: default |
|
|
data_files: |
|
|
- split: ccl |
|
|
path: data/ccl-* |
|
|
license: mit |
|
|
--- |
|
|
|
|
|
# 📜 NitiBench-Statute: Thai Legal Corpus for RAG |
|
|
|
|
|
**Part of the [NitiBench Project](https://github.com/vistec-AI/nitibench/)** |
|
|
|
|
|
This dataset contains the complete corpus of legal sections used in the **NitiBench** benchmark (CCL and Tax subset). It comprises **5,127 legal sections** extracted from **35 Thai legislations** (primarily focusing on Corporate and Commercial Law). |
|
|
|
|
|
It is designed to be used as a **Context Pool (Knowledge Base)** for Retrieval-Augmented Generation (RAG) pipelines. Researchers and developers can load this dataset to populate vector databases or search indices to reproduce NitiBench baselines or evaluate new retrieval strategies. |
|
|
|
|
|
## 🚀 Quick Start |
|
|
|
|
|
### Loading the Dataset |
|
|
You can easily load this dataset using the Hugging Face `datasets` library: |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
|
|
|
# Load the statute corpus |
|
|
dataset = load_dataset("vistec-AI/nitibench-statute", split="ccl") |
|
|
|
|
|
# Example: Print the first section |
|
|
print(dataset[0]) |
|
|
``` |
|
|
|
|
|
### Usage for RAG (Context Pool) |
|
|
To use this as a retrieval source, you typically iterate through the `section_content` to create embeddings: |
|
|
|
|
|
```python |
|
|
documents = [] |
|
|
ids = [] |
|
|
|
|
|
for row in dataset: |
|
|
# Use 'section_content' as the text chunk to be indexed |
|
|
documents.append(row['section_content']) |
|
|
# Use 'law_code' or a combination of name+section as ID |
|
|
ids.append(f"row['law_code']-row['section_num']") |
|
|
|
|
|
# ... Proceed to pass `documents` to your VectorDB or Retriever (e.g., FAISS, ChromaDB, BM25) |
|
|
``` |
|
|
|
|
|
## 📊 Dataset Statistics |
|
|
|
|
|
* **Total Documents:** 5,127 sections |
|
|
* **Total Legislations:** 35 Legislation (Corporate and Commercial Law) |
|
|
* **Language:** Thai |
|
|
|
|
|
## 📂 Data Structure |
|
|
|
|
|
Each row represents a specific section of a law. |
|
|
|
|
|
| Column Name | Type | Description | |
|
|
|:--- |:--- |:--- | |
|
|
| `law_code` | `str` | Unique identifier for the specific law section (e.g., `ก0123-1B-0001`). | |
|
|
| `law_name` | `str` | The official full name of the legislation (e.g., `พระราชบัญญัติการประกอบกิจการพลังงาน พ.ศ. 2550`). | |
|
|
| `section_num` | `str` | The specific section number within the Act (e.g., `26`). | |
|
|
| `section_content` | `str` | The full text content to be used for retrieval. This includes the law name, section number, and the provision text combined. | |
|
|
| `reference` | `list` | A list of cross-references to other laws (if applicable). | |
|
|
|
|
|
### Example Data Point |
|
|
```json |
|
|
{ |
|
|
"law_code": "ก0123-1B-0001", |
|
|
"law_name": "พระราชบัญญัติการประกอบกิจการพลังงาน พ.ศ. 2550", |
|
|
"section_num": "26", |
|
|
"section_content": "พระราชบัญญัติการประกอบกิจการพลังงาน พ.ศ. 2550 มาตรา 26 ก่อนการออกระเบียบ ข้อบังคับ ประกาศ หรือข้อกำหนดใดของคณะกรรมการซึ่งจะมีผลกระทบต่อบุคคล...", |
|
|
"reference": [] |
|
|
} |
|
|
``` |
|
|
|
|
|
## 📝 Citation |
|
|
|
|
|
If you use this dataset in your research, please cite the NitiBench paper: |
|
|
|
|
|
```bibtex |
|
|
@inproceedings{akarajaradwong-etal-2025-nitibench, |
|
|
title = "{N}iti{B}ench: Benchmarking {LLM} Frameworks on {T}hai Legal Question Answering Capabilities", |
|
|
author = "Akarajaradwong, Pawitsapak and |
|
|
Pothavorn, Pirat and |
|
|
Chaksangchaichot, Chompakorn and |
|
|
Tasawong, Panuthep and |
|
|
Nopparatbundit, Thitiwat and |
|
|
Pratai, Keerakiat and |
|
|
Nutanong, Sarana", |
|
|
booktitle = "Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = nov, |
|
|
year = "2025", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
} |
|
|
|
|
|
@misc{akarajaradwong2025nitibenchcomprehensivestudiesllm, |
|
|
title={NitiBench: A Comprehensive Studies of LLM Frameworks Capabilities for Thai Legal Question Answering}, |
|
|
author={Pawitsapak Akarajaradwong and Pirat Pothavorn and Chompakorn Chaksangchaichot and Panuthep Tasawong and Thitiwat Nopparatbundit and Sarana Nutanong}, |
|
|
year={2025}, |
|
|
eprint={2502.10868}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CL}, |
|
|
url={https://arxiv.org/abs/2502.10868}, |
|
|
} |
|
|
``` |
|
|
|
|
|
## ⚖️ License |
|
|
This dataset is provided under the **MIT License**. |