id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
12 values
task_type
stringclasses
8 values
difficulty
stringclasses
4 values
instruction
stringlengths
201
264
input
stringclasses
1 value
output
stringclasses
7 values
metadata
dict
train_03000
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
data_pipeline
expert
Task: data_pipeline Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: SQL Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "SQL", "developer_needs": [ "tests_are_truth", "reproducibility", "documentation" ] }
train_03001
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
foundation
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: foundation Target language: Python Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Python", "developer_needs": [ "governance", "documentation", "security_gates" ] }
train_03002
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
code
foundation
Task: code Topic: Tool calling, sandboxes, and CI integration Difficulty: foundation Target language: Go Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "cost_latency_tradeoffs" ] }
train_03003
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
intermediate
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Java Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "governance", "repo_scale_reasoning" ] }
train_03004
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
explain
advanced
Task: explain Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: Bash Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Bash", "developer_needs": [ "tooling", "security_gates", "cost_latency_tradeoffs" ] }
train_03005
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
expert
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: C# Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "C#", "developer_needs": [ "reproducibility", "tests_are_truth", "repo_scale_reasoning" ] }
train_03006
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
advanced
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: C# Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "tests_are_truth" ] }
train_03007
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
design
advanced
Task: design Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Python Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Python", "developer_needs": [ "ci_integration", "tests_are_truth", "tooling" ] }
train_03008
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
code
intermediate
Task: code Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: Java Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Java", "developer_needs": [ "governance", "reproducibility", "tooling" ] }
train_03009
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
agent_loop
intermediate
Task: agent_loop Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: TypeScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "reproducibility", "evaluation_metrics" ] }
train_03010
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
code
intermediate
Task: code Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Go Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Go", "developer_needs": [ "tooling", "evaluation_metrics", "security_gates" ] }
train_03011
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
agent_loop
intermediate
Task: agent_loop Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Bash Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Bash", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "documentation" ] }
train_03012
2026-01-01T00:00:00
Extended context and repo-scale understanding
data_pipeline
advanced
Task: data_pipeline Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: C# Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "C#", "developer_needs": [ "governance", "tooling", "ci_integration" ] }
train_03013
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
explain
intermediate
Task: explain Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Go Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Go", "developer_needs": [ "governance", "tests_are_truth", "cost_latency_tradeoffs" ] }
train_03014
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
intermediate
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Bash Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Bash", "developer_needs": [ "security_gates", "evaluation_metrics", "repo_scale_reasoning" ] }
train_03015
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
agent_loop
advanced
Task: agent_loop Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Python Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Python", "developer_needs": [ "governance", "evaluation_metrics", "tests_are_truth" ] }
train_03016
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
agent_loop
foundation
Task: agent_loop Topic: Reasoning-first coding models and tunable deliberation Difficulty: foundation Target language: C# Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "C#", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "documentation" ] }
train_03017
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
data_pipeline
expert
Task: data_pipeline Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: C# Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "governance", "repo_scale_reasoning" ] }
train_03018
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
intermediate
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Python Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Python", "developer_needs": [ "evaluation_metrics", "documentation", "repo_scale_reasoning" ] }
train_03019
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
eval
expert
Task: eval Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: TypeScript Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "repo_scale_reasoning", "cost_latency_tradeoffs" ] }
train_03020
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
intermediate
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: C# Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "repo_scale_reasoning", "evaluation_metrics" ] }
train_03021
2026-01-01T00:00:00
Extended context and repo-scale understanding
agent_loop
foundation
Task: agent_loop Topic: Extended context and repo-scale understanding Difficulty: foundation Target language: TypeScript Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "TypeScript", "developer_needs": [ "reproducibility", "cost_latency_tradeoffs", "evaluation_metrics" ] }
train_03022
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
code
expert
Task: code Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Bash Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "documentation", "reproducibility" ] }
train_03023
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
foundation
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: foundation Target language: Java Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Java", "developer_needs": [ "tooling", "repo_scale_reasoning", "governance" ] }
train_03024
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
eval
expert
Task: eval Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Python Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Python", "developer_needs": [ "tooling", "evaluation_metrics", "documentation" ] }
train_03025
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
expert
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Python Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Python", "developer_needs": [ "documentation", "cost_latency_tradeoffs", "evaluation_metrics" ] }
train_03026
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
design
expert
Task: design Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Go Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Go", "developer_needs": [ "security_gates", "documentation", "evaluation_metrics" ] }
train_03027
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
data_pipeline
intermediate
Task: data_pipeline Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Bash Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "governance", "security_gates" ] }
train_03028
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
expert
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Python Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Python", "developer_needs": [ "repo_scale_reasoning", "governance", "documentation" ] }
train_03029
2026-01-01T00:00:00
Secure code generation and policy gates
explain
foundation
Task: explain Topic: Secure code generation and policy gates Difficulty: foundation Target language: Java Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "evaluation_metrics" ] }
train_03030
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
design
intermediate
Task: design Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Go Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Go", "developer_needs": [ "security_gates", "cost_latency_tradeoffs", "reproducibility" ] }
train_03031
2026-01-01T00:00:00
Secure code generation and policy gates
agent_loop
foundation
Task: agent_loop Topic: Secure code generation and policy gates Difficulty: foundation Target language: Go Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Go", "developer_needs": [ "documentation", "evaluation_metrics", "tooling" ] }
train_03032
2026-01-01T00:00:00
Secure code generation and policy gates
code
expert
Task: code Topic: Secure code generation and policy gates Difficulty: expert Target language: JavaScript Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "cost_latency_tradeoffs", "reproducibility" ] }
train_03033
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
code
intermediate
Task: code Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Rust Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Rust", "developer_needs": [ "governance", "tests_are_truth", "security_gates" ] }
train_03034
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
explain
foundation
Task: explain Topic: Model merging, distillation, and continued pretraining Difficulty: foundation Target language: JavaScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "JavaScript", "developer_needs": [ "evaluation_metrics", "repo_scale_reasoning", "cost_latency_tradeoffs" ] }
train_03035
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
design
intermediate
Task: design Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: JavaScript Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "tooling", "cost_latency_tradeoffs" ] }
train_03036
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
data_pipeline
foundation
Task: data_pipeline Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: foundation Target language: Bash Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Bash", "developer_needs": [ "documentation", "reproducibility", "tests_are_truth" ] }
train_03037
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
advanced
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Go Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "documentation" ] }
train_03038
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
data_pipeline
intermediate
Task: data_pipeline Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: SQL Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "governance" ] }
train_03039
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
agent_loop
expert
Task: agent_loop Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: JavaScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "governance", "evaluation_metrics" ] }
train_03040
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
compare
foundation
Task: compare Topic: Governance, provenance, and licensing for code data Difficulty: foundation Target language: Python Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Python", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "ci_integration" ] }
train_03041
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
eval
expert
Task: eval Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Python Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Python", "developer_needs": [ "evaluation_metrics", "cost_latency_tradeoffs", "documentation" ] }
train_03042
2026-01-01T00:00:00
Secure code generation and policy gates
code
advanced
Task: code Topic: Secure code generation and policy gates Difficulty: advanced Target language: TypeScript Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "reproducibility", "tests_are_truth" ] }
train_03043
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
agent_loop
foundation
Task: agent_loop Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: foundation Target language: TypeScript Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "tests_are_truth" ] }
train_03044
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
agent_loop
intermediate
Task: agent_loop Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Bash Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Bash", "developer_needs": [ "tooling", "evaluation_metrics", "documentation" ] }
train_03045
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
expert
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Rust Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Rust", "developer_needs": [ "documentation", "repo_scale_reasoning", "governance" ] }
train_03046
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
review
advanced
Task: review Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: JavaScript Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "security_gates", "cost_latency_tradeoffs" ] }
train_03047
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
design
advanced
Task: design Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: C# Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "ci_integration", "tooling" ] }
train_03048
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
code
advanced
Task: code Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Java Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Java", "developer_needs": [ "tests_are_truth", "documentation", "evaluation_metrics" ] }
train_03049
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
explain
expert
Task: explain Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Rust Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "reproducibility" ] }
train_03050
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
code
expert
Task: code Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Bash Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Bash", "developer_needs": [ "governance", "reproducibility", "repo_scale_reasoning" ] }
train_03051
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
design
advanced
Task: design Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Rust Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "cost_latency_tradeoffs", "repo_scale_reasoning" ] }
train_03052
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
explain
advanced
Task: explain Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: Go Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "documentation" ] }
train_03053
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
compare
foundation
Task: compare Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: foundation Target language: JavaScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "tooling", "reproducibility" ] }
train_03054
2026-01-01T00:00:00
Secure code generation and policy gates
agent_loop
advanced
Task: agent_loop Topic: Secure code generation and policy gates Difficulty: advanced Target language: Go Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Go", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "documentation" ] }
train_03055
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
code
foundation
Task: code Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: foundation Target language: Go Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Go", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "repo_scale_reasoning" ] }
train_03056
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
eval
advanced
Task: eval Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Rust Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Rust", "developer_needs": [ "documentation", "repo_scale_reasoning", "tooling" ] }
train_03057
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
review
intermediate
Task: review Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Java Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "Java", "developer_needs": [ "governance", "documentation", "repo_scale_reasoning" ] }
train_03058
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
code
foundation
Task: code Topic: Reasoning-first coding models and tunable deliberation Difficulty: foundation Target language: C# Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "C#", "developer_needs": [ "governance", "tests_are_truth", "ci_integration" ] }
train_03059
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
advanced
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Rust Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "governance" ] }
train_03060
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
agent_loop
advanced
Task: agent_loop Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: Python Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Python", "developer_needs": [ "ci_integration", "tooling", "governance" ] }
train_03061
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
explain
expert
Task: explain Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: JavaScript Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "JavaScript", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "documentation" ] }
train_03062
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
intermediate
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Python Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Python", "developer_needs": [ "governance", "tests_are_truth", "reproducibility" ] }
train_03063
2026-01-01T00:00:00
Secure code generation and policy gates
design
expert
Task: design Topic: Secure code generation and policy gates Difficulty: expert Target language: JavaScript Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "ci_integration" ] }
train_03064
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
data_pipeline
expert
Task: data_pipeline Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Rust Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "cost_latency_tradeoffs" ] }
train_03065
2026-01-01T00:00:00
Secure code generation and policy gates
data_pipeline
foundation
Task: data_pipeline Topic: Secure code generation and policy gates Difficulty: foundation Target language: SQL Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "reproducibility" ] }
train_03066
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
data_pipeline
intermediate
Task: data_pipeline Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Bash Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Bash", "developer_needs": [ "tooling", "tests_are_truth", "documentation" ] }
train_03067
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
eval
foundation
Task: eval Topic: SWE-bench style real-repo evaluation Difficulty: foundation Target language: Go Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Go", "developer_needs": [ "governance", "cost_latency_tradeoffs", "documentation" ] }
train_03068
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
design
expert
Task: design Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Python Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Python", "developer_needs": [ "tooling", "documentation", "ci_integration" ] }
train_03069
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
expert
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Python Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Python", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "documentation" ] }
train_03070
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
expert
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: TypeScript Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "TypeScript", "developer_needs": [ "governance", "cost_latency_tradeoffs", "tests_are_truth" ] }
train_03071
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
advanced
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: Python Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Python", "developer_needs": [ "security_gates", "governance", "repo_scale_reasoning" ] }
train_03072
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
review
intermediate
Task: review Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Java Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "Java", "developer_needs": [ "reproducibility", "governance", "tooling" ] }
train_03073
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
explain
advanced
Task: explain Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: C# Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "cost_latency_tradeoffs" ] }
train_03074
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
agent_loop
advanced
Task: agent_loop Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Python Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Python", "developer_needs": [ "governance", "tests_are_truth", "cost_latency_tradeoffs" ] }
train_03075
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
code
foundation
Task: code Topic: Code-specialized model families and sizing tradeoffs Difficulty: foundation Target language: JavaScript Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "documentation", "tests_are_truth" ] }
train_03076
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
explain
expert
Task: explain Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Go Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Go", "developer_needs": [ "documentation", "reproducibility", "cost_latency_tradeoffs" ] }
train_03077
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
design
expert
Task: design Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Java Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Java", "developer_needs": [ "security_gates", "repo_scale_reasoning", "evaluation_metrics" ] }
train_03078
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
code
advanced
Task: code Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Java Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Java", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "repo_scale_reasoning" ] }
train_03079
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
data_pipeline
advanced
Task: data_pipeline Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Rust Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "ci_integration", "evaluation_metrics" ] }
train_03080
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
agent_loop
foundation
Task: agent_loop Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: foundation Target language: JavaScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "evaluation_metrics", "ci_integration" ] }
train_03081
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
intermediate
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: C# Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "C#", "developer_needs": [ "reproducibility", "documentation", "repo_scale_reasoning" ] }
train_03082
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
expert
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Rust Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Rust", "developer_needs": [ "security_gates", "documentation", "tooling" ] }
train_03083
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
explain
advanced
Task: explain Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: SQL Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "governance", "evaluation_metrics" ] }
train_03084
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
agent_loop
expert
Task: agent_loop Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Rust Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Rust", "developer_needs": [ "tooling", "governance", "reproducibility" ] }
train_03085
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
data_pipeline
foundation
Task: data_pipeline Topic: Code-specialized model families and sizing tradeoffs Difficulty: foundation Target language: JavaScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "documentation", "ci_integration" ] }
train_03086
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
code
intermediate
Task: code Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Java Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Java", "developer_needs": [ "tests_are_truth", "governance", "security_gates" ] }
train_03087
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
data_pipeline
foundation
Task: data_pipeline Topic: Governance, provenance, and licensing for code data Difficulty: foundation Target language: TypeScript Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "governance", "tooling" ] }
train_03088
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
compare
advanced
Task: compare Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: SQL Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "governance", "documentation" ] }
train_03089
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
review
intermediate
Task: review Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Java Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "Java", "developer_needs": [ "security_gates", "repo_scale_reasoning", "cost_latency_tradeoffs" ] }
train_03090
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
compare
foundation
Task: compare Topic: SWE-bench style real-repo evaluation Difficulty: foundation Target language: C# Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "documentation", "governance" ] }
train_03091
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
agent_loop
expert
Task: agent_loop Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Rust Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "governance", "evaluation_metrics" ] }
train_03092
2026-01-01T00:00:00
Extended context and repo-scale understanding
design
expert
Task: design Topic: Extended context and repo-scale understanding Difficulty: expert Target language: SQL Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "SQL", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "security_gates" ] }
train_03093
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
code
foundation
Task: code Topic: Reasoning-first coding models and tunable deliberation Difficulty: foundation Target language: Java Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Java", "developer_needs": [ "ci_integration", "governance", "security_gates" ] }
train_03094
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
design
expert
Task: design Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: C# Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "security_gates" ] }
train_03095
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
agent_loop
foundation
Task: agent_loop Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: foundation Target language: TypeScript Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "governance", "cost_latency_tradeoffs" ] }
train_03096
2026-01-01T00:00:00
Secure code generation and policy gates
review
foundation
Task: review Topic: Secure code generation and policy gates Difficulty: foundation Target language: C# Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "governance", "documentation" ] }
train_03097
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
expert
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: C# Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "governance", "security_gates" ] }
train_03098
2026-01-01T00:00:00
Secure code generation and policy gates
design
expert
Task: design Topic: Secure code generation and policy gates Difficulty: expert Target language: Rust Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "documentation", "ci_integration" ] }
train_03099
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
data_pipeline
advanced
Task: data_pipeline Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: SQL Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "documentation" ] }