id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
12 values
task_type
stringclasses
8 values
difficulty
stringclasses
4 values
instruction
stringlengths
201
264
input
stringclasses
1 value
output
stringclasses
7 values
metadata
dict
train_03800
2026-01-01T00:00:00
Extended context and repo-scale understanding
design
expert
Task: design Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Java Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Java", "developer_needs": [ "documentation", "tests_are_truth", "cost_latency_tradeoffs" ] }
train_03801
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
advanced
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: C# Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "governance" ] }
train_03802
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
explain
intermediate
Task: explain Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: JavaScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "JavaScript", "developer_needs": [ "governance", "repo_scale_reasoning", "evaluation_metrics" ] }
train_03803
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
expert
Task: explain Topic: Extended context and repo-scale understanding Difficulty: expert Target language: JavaScript Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "JavaScript", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "tests_are_truth" ] }
train_03804
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
explain
intermediate
Task: explain Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Java Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Java", "developer_needs": [ "tooling", "governance", "cost_latency_tradeoffs" ] }
train_03805
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
code
expert
Task: code Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: SQL Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "SQL", "developer_needs": [ "governance", "reproducibility", "tooling" ] }
train_03806
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
advanced
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: SQL Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "tests_are_truth", "ci_integration" ] }
train_03807
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
intermediate
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Rust Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "governance", "repo_scale_reasoning" ] }
train_03808
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
data_pipeline
expert
Task: data_pipeline Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: SQL Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "SQL", "developer_needs": [ "documentation", "tests_are_truth", "repo_scale_reasoning" ] }
train_03809
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
foundation
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: foundation Target language: TypeScript Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "cost_latency_tradeoffs" ] }
train_03810
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
data_pipeline
expert
Task: data_pipeline Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Java Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Java", "developer_needs": [ "documentation", "governance", "reproducibility" ] }
train_03811
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
expert
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Java Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "security_gates", "repo_scale_reasoning" ] }
train_03812
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
intermediate
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: JavaScript Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "repo_scale_reasoning", "evaluation_metrics" ] }
train_03813
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
intermediate
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Bash Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "evaluation_metrics" ] }
train_03814
2026-01-01T00:00:00
Secure code generation and policy gates
compare
advanced
Task: compare Topic: Secure code generation and policy gates Difficulty: advanced Target language: Rust Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "governance", "repo_scale_reasoning" ] }
train_03815
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
design
expert
Task: design Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Rust Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Rust", "developer_needs": [ "governance", "tooling", "tests_are_truth" ] }
train_03816
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
data_pipeline
foundation
Task: data_pipeline Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: foundation Target language: TypeScript Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "cost_latency_tradeoffs", "tooling" ] }
train_03817
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
agent_loop
advanced
Task: agent_loop Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: JavaScript Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "governance", "cost_latency_tradeoffs" ] }
train_03818
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
expert
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: TypeScript Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "reproducibility", "tests_are_truth" ] }
train_03819
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
explain
foundation
Task: explain Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: foundation Target language: Python Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Python", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "tests_are_truth" ] }
train_03820
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
data_pipeline
advanced
Task: data_pipeline Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: SQL Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "SQL", "developer_needs": [ "ci_integration", "tests_are_truth", "repo_scale_reasoning" ] }
train_03821
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
explain
advanced
Task: explain Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Java Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "reproducibility", "governance" ] }
train_03822
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
agent_loop
advanced
Task: agent_loop Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Rust Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "governance", "tests_are_truth" ] }
train_03823
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
compare
intermediate
Task: compare Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Bash Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "cost_latency_tradeoffs" ] }
train_03824
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
foundation
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: foundation Target language: SQL Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "SQL", "developer_needs": [ "governance", "tooling", "repo_scale_reasoning" ] }
train_03825
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
foundation
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: foundation Target language: Bash Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Bash", "developer_needs": [ "security_gates", "reproducibility", "governance" ] }
train_03826
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
review
expert
Task: review Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Bash Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "documentation", "tooling" ] }
train_03827
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
eval
foundation
Task: eval Topic: SWE-bench style real-repo evaluation Difficulty: foundation Target language: TypeScript Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "governance", "cost_latency_tradeoffs" ] }
train_03828
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
code
expert
Task: code Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: JavaScript Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "ci_integration", "repo_scale_reasoning" ] }
train_03829
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
foundation
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: foundation Target language: Bash Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Bash", "developer_needs": [ "governance", "reproducibility", "evaluation_metrics" ] }
train_03830
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
compare
expert
Task: compare Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: SQL Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "tests_are_truth", "documentation" ] }
train_03831
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
explain
foundation
Task: explain Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: foundation Target language: Bash Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Bash", "developer_needs": [ "reproducibility", "tests_are_truth", "documentation" ] }
train_03832
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
intermediate
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: C# Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "C#", "developer_needs": [ "ci_integration", "evaluation_metrics", "tests_are_truth" ] }
train_03833
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
agent_loop
expert
Task: agent_loop Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Java Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "governance", "tooling" ] }
train_03834
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
compare
intermediate
Task: compare Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: JavaScript Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "tests_are_truth" ] }
train_03835
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
expert
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: JavaScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "reproducibility", "repo_scale_reasoning" ] }
train_03836
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
intermediate
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: Java Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Java", "developer_needs": [ "governance", "tests_are_truth", "repo_scale_reasoning" ] }
train_03837
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
expert
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Go Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Go", "developer_needs": [ "evaluation_metrics", "ci_integration", "reproducibility" ] }
train_03838
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
review
intermediate
Task: review Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: C# Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "governance" ] }
train_03839
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
eval
advanced
Task: eval Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Bash Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Bash", "developer_needs": [ "evaluation_metrics", "ci_integration", "cost_latency_tradeoffs" ] }
train_03840
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
review
expert
Task: review Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Python Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "Python", "developer_needs": [ "ci_integration", "documentation", "governance" ] }
train_03841
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
compare
intermediate
Task: compare Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Go Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Go", "developer_needs": [ "ci_integration", "reproducibility", "security_gates" ] }
train_03842
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
explain
expert
Task: explain Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: C# Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "documentation", "ci_integration" ] }
train_03843
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
design
advanced
Task: design Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: SQL Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "tooling", "repo_scale_reasoning" ] }
train_03844
2026-01-01T00:00:00
Secure code generation and policy gates
agent_loop
foundation
Task: agent_loop Topic: Secure code generation and policy gates Difficulty: foundation Target language: TypeScript Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "TypeScript", "developer_needs": [ "governance", "tests_are_truth", "evaluation_metrics" ] }
train_03845
2026-01-01T00:00:00
Secure code generation and policy gates
eval
intermediate
Task: eval Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Go Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Go", "developer_needs": [ "evaluation_metrics", "repo_scale_reasoning", "tests_are_truth" ] }
train_03846
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
intermediate
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: SQL Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "SQL", "developer_needs": [ "security_gates", "tooling", "ci_integration" ] }
train_03847
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
design
expert
Task: design Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Java Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Java", "developer_needs": [ "tooling", "security_gates", "repo_scale_reasoning" ] }
train_03848
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
design
intermediate
Task: design Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Go Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Go", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "tests_are_truth" ] }
train_03849
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
intermediate
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Java Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "security_gates", "evaluation_metrics" ] }
train_03850
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
advanced
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: C# Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "C#", "developer_needs": [ "tooling", "tests_are_truth", "documentation" ] }
train_03851
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
design
advanced
Task: design Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Bash Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "evaluation_metrics" ] }
train_03852
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
review
foundation
Task: review Topic: Tool calling, sandboxes, and CI integration Difficulty: foundation Target language: Bash Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "governance", "reproducibility" ] }
train_03853
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
review
foundation
Task: review Topic: SWE-bench style real-repo evaluation Difficulty: foundation Target language: Bash Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "tests_are_truth", "cost_latency_tradeoffs" ] }
train_03854
2026-01-01T00:00:00
Secure code generation and policy gates
design
intermediate
Task: design Topic: Secure code generation and policy gates Difficulty: intermediate Target language: C# Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "C#", "developer_needs": [ "documentation", "repo_scale_reasoning", "evaluation_metrics" ] }
train_03855
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
advanced
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: JavaScript Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "tooling", "documentation" ] }
train_03856
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
explain
advanced
Task: explain Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: SQL Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "ci_integration", "evaluation_metrics" ] }
train_03857
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
intermediate
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: C# Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "C#", "developer_needs": [ "governance", "tooling", "tests_are_truth" ] }
train_03858
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
advanced
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: TypeScript Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "evaluation_metrics", "cost_latency_tradeoffs" ] }
train_03859
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
explain
intermediate
Task: explain Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Java Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "tooling", "security_gates" ] }
train_03860
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
intermediate
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: JavaScript Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "ci_integration", "reproducibility" ] }
train_03861
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
advanced
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: C# Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "C#", "developer_needs": [ "reproducibility", "governance", "documentation" ] }
train_03862
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
expert
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Rust Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Review: correctness, security, performance, governance
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "tooling" ] }
train_03863
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
foundation
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: foundation Target language: TypeScript Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "TypeScript", "developer_needs": [ "reproducibility", "security_gates", "tooling" ] }
train_03864
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
eval
foundation
Task: eval Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: foundation Target language: Java Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Java", "developer_needs": [ "documentation", "tooling", "cost_latency_tradeoffs" ] }
train_03865
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
agent_loop
expert
Task: agent_loop Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: JavaScript Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "governance", "documentation" ] }
train_03866
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
agent_loop
advanced
Task: agent_loop Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Python Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Python", "developer_needs": [ "repo_scale_reasoning", "tooling", "ci_integration" ] }
train_03867
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
eval
expert
Task: eval Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Python Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Python", "developer_needs": [ "security_gates", "documentation", "cost_latency_tradeoffs" ] }
train_03868
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
code
intermediate
Task: code Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Bash Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Bash", "developer_needs": [ "documentation", "reproducibility", "tooling" ] }
train_03869
2026-01-01T00:00:00
Secure code generation and policy gates
compare
intermediate
Task: compare Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Rust Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "governance", "ci_integration" ] }
train_03870
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
compare
expert
Task: compare Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Java Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Java", "developer_needs": [ "governance", "repo_scale_reasoning", "tooling" ] }
train_03871
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
eval
intermediate
Task: eval Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: C# Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "governance", "security_gates" ] }
train_03872
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
data_pipeline
intermediate
Task: data_pipeline Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: SQL Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "SQL", "developer_needs": [ "ci_integration", "cost_latency_tradeoffs", "repo_scale_reasoning" ] }
train_03873
2026-01-01T00:00:00
Secure code generation and policy gates
eval
expert
Task: eval Topic: Secure code generation and policy gates Difficulty: expert Target language: SQL Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "SQL", "developer_needs": [ "documentation", "reproducibility", "repo_scale_reasoning" ] }
train_03874
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
design
advanced
Task: design Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: JavaScript Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "tooling", "security_gates" ] }
train_03875
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
intermediate
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: Go Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "tooling" ] }
train_03876
2026-01-01T00:00:00
Extended context and repo-scale understanding
eval
expert
Task: eval Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Go Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Go", "developer_needs": [ "repo_scale_reasoning", "tooling", "reproducibility" ] }
train_03877
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
advanced
Task: explain Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: TypeScript Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "cost_latency_tradeoffs", "governance" ] }
train_03878
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
agent_loop
expert
Task: agent_loop Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Bash Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "security_gates" ] }
train_03879
2026-01-01T00:00:00
Extended context and repo-scale understanding
agent_loop
intermediate
Task: agent_loop Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Go Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Go", "developer_needs": [ "evaluation_metrics", "tooling", "governance" ] }
train_03880
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
design
advanced
Task: design Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Python Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Python", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "security_gates" ] }
train_03881
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
compare
advanced
Task: compare Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: JavaScript Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "evaluation_metrics", "repo_scale_reasoning" ] }
train_03882
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
intermediate
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Python Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Python", "developer_needs": [ "governance", "tooling", "ci_integration" ] }
train_03883
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
data_pipeline
foundation
Task: data_pipeline Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: foundation Target language: Go Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Go", "developer_needs": [ "documentation", "reproducibility", "tests_are_truth" ] }
train_03884
2026-01-01T00:00:00
Extended context and repo-scale understanding
agent_loop
foundation
Task: agent_loop Topic: Extended context and repo-scale understanding Difficulty: foundation Target language: Python Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "Python", "developer_needs": [ "governance", "ci_integration", "repo_scale_reasoning" ] }
train_03885
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
intermediate
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Go Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Go", "developer_needs": [ "documentation", "security_gates", "governance" ] }
train_03886
2026-01-01T00:00:00
Secure code generation and policy gates
design
expert
Task: design Topic: Secure code generation and policy gates Difficulty: expert Target language: Bash Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Bash", "developer_needs": [ "documentation", "cost_latency_tradeoffs", "evaluation_metrics" ] }
train_03887
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
compare
advanced
Task: compare Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: TypeScript Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "ci_integration", "governance" ] }
train_03888
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
agent_loop
advanced
Task: agent_loop Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: SQL Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "governance", "repo_scale_reasoning" ] }
train_03889
2026-01-01T00:00:00
Secure code generation and policy gates
compare
advanced
Task: compare Topic: Secure code generation and policy gates Difficulty: advanced Target language: Rust Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "security_gates" ] }
train_03890
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
compare
expert
Task: compare Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Bash Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Bash", "developer_needs": [ "tooling", "evaluation_metrics", "tests_are_truth" ] }
train_03891
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
agent_loop
expert
Task: agent_loop Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: C# Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Agent loop: Plan → Edit (diff) → Test → Reflect → Human gate
{ "target_language": "C#", "developer_needs": [ "documentation", "evaluation_metrics", "tooling" ] }
train_03892
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
intermediate
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Go Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Go", "developer_needs": [ "ci_integration", "reproducibility", "documentation" ] }
train_03893
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
explain
advanced
Task: explain Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Bash Context: Integrate an LLM agent into CI for a large monorepo. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "Bash", "developer_needs": [ "documentation", "evaluation_metrics", "security_gates" ] }
train_03894
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
compare
expert
Task: compare Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Go Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Go", "developer_needs": [ "governance", "repo_scale_reasoning", "tests_are_truth" ] }
train_03895
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
eval
advanced
Task: eval Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Go Context: Create an eval harness that reflects real developer workflows. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Eval: - Tasks: real issues - Metrics: pass@k, time-to-green - Gates: lint/security
{ "target_language": "Go", "developer_needs": [ "documentation", "tooling", "ci_integration" ] }
train_03896
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
data_pipeline
intermediate
Task: data_pipeline Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: JavaScript Context: Fix a failing issue with tests as the oracle and produce a safe patch. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "evaluation_metrics", "cost_latency_tradeoffs" ] }
train_03897
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
advanced
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Java Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Compare: capability, cost, latency, reliability, governance
{ "target_language": "Java", "developer_needs": [ "governance", "evaluation_metrics", "repo_scale_reasoning" ] }
train_03898
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
advanced
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: JavaScript Context: Design a data pipeline for continued pretraining with auditability. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Design guidance with risks, metrics, acceptance criteria
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "ci_integration", "repo_scale_reasoning" ] }
train_03899
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
data_pipeline
intermediate
Task: data_pipeline Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Python Context: Evaluate two coding models for internal rollout under strict governance. Deliver production-grade guidance or artifacts.
Key facts: - Modern AI coding emphasizes correctness via tests, agentic loops, and real-repo evaluation. - Reasoning-first and MoE approaches improve capability-per-compute when paired with tools. Pipeline: 1) Ingest 2) Normalize 3) Filter 4) Dedupe 5) Quality score 6) Sample 7) Audit
{ "target_language": "Python", "developer_needs": [ "ci_integration", "security_gates", "tests_are_truth" ] }