|
|
--- |
|
|
pretty_name: Genesis AI Code (Demo) 1K |
|
|
tags: |
|
|
- within-us-ai |
|
|
- genesis |
|
|
- code |
|
|
- agentic |
|
|
- reasoning |
|
|
- tool-calling |
|
|
- evaluation |
|
|
- security |
|
|
- governance |
|
|
- moe |
|
|
task_categories: |
|
|
- text-generation |
|
|
- question-answering |
|
|
language: |
|
|
- en |
|
|
license: cc0-1.0 |
|
|
size_categories: |
|
|
- n<1K |
|
|
--- |
|
|
|
|
|
# Genesis AI Code (Demo) 1K |
|
|
|
|
|
**Developed by: Within Us AI** |
|
|
|
|
|
Best-of demo subset for instant evaluation and fast adoption. |
|
|
|
|
|
## Splits |
|
|
- train: 1,000 |
|
|
- validation: 1,000 |
|
|
|
|
|
## Highlights |
|
|
- Tests-as-truth supervision patterns |
|
|
- Diff-first patching |
|
|
- Agentic loops (plan→edit→test→reflect) with bounded budgets |
|
|
- Tool-call trace supervision (where present) |
|
|
- Governance/audit & policy-gate awareness |
|
|
|
|
|
## Storage format |
|
|
Parquet unavailable (No module named 'pyarrow'); JSONL shards in `/data`. |
|
|
|
|
|
## Quick start |
|
|
```python |
|
|
from datasets import load_dataset |
|
|
ds = load_dataset("<YOUR_ORG_OR_USER>/Genesis AI Code (Demo) 1K", split="train") |
|
|
print(ds[0]) |
|
|
``` |
|
|
|