id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
14 values
task_type
stringclasses
10 values
difficulty
stringclasses
3 values
instruction
stringlengths
189
248
input
stringclasses
1 value
output
stringclasses
9 values
reasoning_steps
listlengths
0
5
metadata
dict
hash
stringlengths
40
40
train_01700
2026-01-01T00:00:00
Self-improving agents and feedback loops
explain
advanced
Task: explain Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "security_gates", "cost_latency_tradeoffs", "evaluation_metrics", "reproducibility" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
68473f8dd8f9b1f35a3214adfbf58983e2c693bc
train_01701
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
code
intermediate
Task: code Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "cost_latency_tradeoffs", "tests_are_truth", "repo_scale_reasoning" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
70d10286eacf298fc2cc18f680aef7fb92c7bb3b
train_01702
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
patch_diff
advanced
Task: patch_diff Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "JavaScript", "developer_needs": [ "governance", "repo_scale_reasoning", "evaluation_metrics", "security_gates" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e5c845ee2a1af5669fc7f19c01ded74786a311b9
train_01703
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
failure_analysis
expert
Task: failure_analysis Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "documentation", "security_gates", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
92641911d509b01518bd1c9c0a5db8ebf6de8b37
train_01704
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
failure_analysis
advanced
Task: failure_analysis Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "reproducibility", "security_gates", "cost_latency_tradeoffs", "documentation" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9663ce9ffaf44e7ff6c51d8aee7bc77ecf64d7ca
train_01705
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
patch_diff
expert
Task: patch_diff Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "C#", "developer_needs": [ "auditability", "reproducibility", "tooling", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1c07d99457121d324c5dda377b65d627ef25d864
train_01706
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
design
advanced
Task: design Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "security_gates", "tests_are_truth", "reproducibility", "governance" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1183aa5753977185728191a13afd538d1b8b40f5
train_01707
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
design
intermediate
Task: design Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "reproducibility", "tooling", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
36c7bd3a87ed2ad6458feb3394dc99220c52db27
train_01708
2026-01-01T00:00:00
Self-improving agents and feedback loops
agent_loop
advanced
Task: agent_loop Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "ci_integration", "tests_are_truth" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7df4fced932a9ce3f5eea8ced3ea9a985ab0341e
train_01709
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
intermediate
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "governance", "evaluation_metrics", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
124535f824ad81f48e045b67f918d703e6a1921f
train_01710
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
expert
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "SQL", "developer_needs": [ "ci_integration", "tests_are_truth", "tooling", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
995920042f87542470b1e268608202be8e2e86c3
train_01711
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
code
advanced
Task: code Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "evaluation_metrics", "cost_latency_tradeoffs", "security_gates", "auditability" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
675b24de745a0b477bd163a17baf60e9f2d966a2
train_01712
2026-01-01T00:00:00
Self-improving agents and feedback loops
agent_loop
intermediate
Task: agent_loop Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Java", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "auditability", "governance" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
81614b83ee66e9b37d1016bb1a1a9cb4fe8bfbaa
train_01713
2026-01-01T00:00:00
Secure code generation and policy gates
patch_diff
intermediate
Task: patch_diff Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "ci_integration", "evaluation_metrics", "tests_are_truth", "documentation" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
75be9ccd9ee37b68919ff10291c8fced605e005a
train_01714
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
advanced
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "cost_latency_tradeoffs", "tooling", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7b6f4e1cff995c66b03f523866b5b2b5ef4226a3
train_01715
2026-01-01T00:00:00
Extended context and repo-scale understanding
code
expert
Task: code Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "reproducibility", "documentation", "security_gates", "cost_latency_tradeoffs" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e0dac6ca89a26bb716bdef4bfaf2efdee80498ce
train_01716
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
data_pipeline
intermediate
Task: data_pipeline Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "TypeScript", "developer_needs": [ "reproducibility", "security_gates", "repo_scale_reasoning", "governance" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3e41738627729729a37441c013bde4ac182d0778
train_01717
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
advanced
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "security_gates", "documentation", "governance" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0b841cfc7d03819b30ff70aeff5a6c7ee8ae0249
train_01718
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
intermediate
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "governance", "repo_scale_reasoning", "auditability", "reproducibility" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c184a19a6ca0171932f3066fe444ce116342ea18
train_01719
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
eval
intermediate
Task: eval Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Go", "developer_needs": [ "ci_integration", "reproducibility", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
74af8307111b9be833afd74597e33da0f1df0feb
train_01720
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
agent_loop
intermediate
Task: agent_loop Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "governance", "tests_are_truth", "security_gates" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
208d866ce708b2863a4f574d8519cbd77fa38b22
train_01721
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
intermediate
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Go", "developer_needs": [ "tooling", "auditability", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b85c2acdd7f3d0130add9b64af2931695bb0d9b7
train_01722
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
agent_loop
intermediate
Task: agent_loop Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Python", "developer_needs": [ "documentation", "governance", "auditability", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
98905552fa64ed883f10dae5376ac86485af1fc0
train_01723
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
explain
intermediate
Task: explain Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "cost_latency_tradeoffs", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f856e4bc5a75a2c32a7dd000ef986a08e6ddacaa
train_01724
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
failure_analysis
intermediate
Task: failure_analysis Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
28bd68ca16324f00515312881ffa1f036196c17c
train_01725
2026-01-01T00:00:00
Latency, cost, and reliability optimization
code
intermediate
Task: code Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "security_gates", "repo_scale_reasoning", "auditability", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
021c7480b31533d9032c716820212d77e5b8a09b
train_01726
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
expert
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "tests_are_truth", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1dd71a8fc5e183c80822b0bf4e523e518b59668b
train_01727
2026-01-01T00:00:00
Secure code generation and policy gates
agent_loop
expert
Task: agent_loop Topic: Secure code generation and policy gates Difficulty: expert Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "repo_scale_reasoning", "security_gates", "tooling", "reproducibility" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a55446d06132c0757e382c5cf5a3f8d554edf98d
train_01728
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
patch_diff
advanced
Task: patch_diff Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "governance", "auditability", "evaluation_metrics" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
41c1c9781c9c55f0c5e57f8b105469ce45c9a347
train_01729
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
compare
expert
Task: compare Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Go", "developer_needs": [ "reproducibility", "cost_latency_tradeoffs", "governance", "auditability" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7bc9209a8a922f7ee86145d85670b73f1d070100
train_01730
2026-01-01T00:00:00
Extended context and repo-scale understanding
data_pipeline
advanced
Task: data_pipeline Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "repo_scale_reasoning", "documentation", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ca50b7352d18fc5cb6eb519a3b0601249894b5cb
train_01731
2026-01-01T00:00:00
Latency, cost, and reliability optimization
code
expert
Task: code Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "governance", "documentation", "repo_scale_reasoning", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
43b17137aac8435aad5af8879fe68d8ef0c794a3
train_01732
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
design
expert
Task: design Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "ci_integration", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ec793e74b7a77238d196132885fd66098eb84bc1
train_01733
2026-01-01T00:00:00
Secure code generation and policy gates
design
expert
Task: design Topic: Secure code generation and policy gates Difficulty: expert Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "security_gates", "reproducibility", "repo_scale_reasoning", "ci_integration" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4b4e4985589d1a4236d581645a18c6a5716488ba
train_01734
2026-01-01T00:00:00
Extended context and repo-scale understanding
design
advanced
Task: design Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "tooling", "governance", "documentation", "ci_integration" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8b6916462c84f7aa582c8669eb4782350f8b0443
train_01735
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
advanced
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "auditability", "cost_latency_tradeoffs", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1fad8abe482bf0d55f3494fd7d2be2359fb17d25
train_01736
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
review
expert
Task: review Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "documentation", "auditability", "reproducibility" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c1d4ae0b188728243c97593a7bbfff3aa481aadd
train_01737
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
agent_loop
intermediate
Task: agent_loop Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "JavaScript", "developer_needs": [ "evaluation_metrics", "auditability", "reproducibility", "ci_integration" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
04fac14212ae1f07e1c241f7c2615f11f1fd1efd
train_01738
2026-01-01T00:00:00
Extended context and repo-scale understanding
patch_diff
advanced
Task: patch_diff Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Bash", "developer_needs": [ "governance", "security_gates", "repo_scale_reasoning", "evaluation_metrics" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
77572388ecc2b8b935f3eefe5f23865bbd800bcf
train_01739
2026-01-01T00:00:00
Self-improving agents and feedback loops
design
intermediate
Task: design Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "tests_are_truth", "repo_scale_reasoning", "security_gates" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3bf691969577b1e7266f58c849c3100d464cd566
train_01740
2026-01-01T00:00:00
Extended context and repo-scale understanding
eval
advanced
Task: eval Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Java", "developer_needs": [ "tests_are_truth", "ci_integration", "repo_scale_reasoning", "documentation" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cc79e15751ec4c5d36964e4aa9955d452b1ee631
train_01741
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
agent_loop
expert
Task: agent_loop Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Go", "developer_needs": [ "evaluation_metrics", "reproducibility", "auditability", "tooling" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ef16eb0323390cdcc32b49ef72c7ebfc4d364801
train_01742
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
compare
expert
Task: compare Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "tooling", "auditability", "governance" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
48ada8ca3d38ded7d5d5f73f00894e41ee9e7cf6
train_01743
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
data_pipeline
expert
Task: data_pipeline Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "cost_latency_tradeoffs", "governance", "repo_scale_reasoning", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
559ccda68ba4586d79396f350cfd81a350f7200a
train_01744
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
eval
intermediate
Task: eval Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "documentation", "evaluation_metrics", "ci_integration", "governance" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6e75c766bf558f0480d839d3e0bf66da585a5025
train_01745
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
advanced
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "reproducibility", "ci_integration", "governance" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fcdad25a14898069728c1a07b299d9ec1a57de72
train_01746
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
patch_diff
expert
Task: patch_diff Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "evaluation_metrics", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
788c1d3d763e3201bfdaf191d6fef9364e9bbace
train_01747
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
expert
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "security_gates", "tooling", "ci_integration" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0113859f874b8b2f96f00e84e519c9b0122e87bb
train_01748
2026-01-01T00:00:00
Self-improving agents and feedback loops
review
expert
Task: review Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Bash", "developer_needs": [ "governance", "auditability", "evaluation_metrics", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bcdad556f625a8755df8080ff4def0e95d1be9b4
train_01749
2026-01-01T00:00:00
Latency, cost, and reliability optimization
design
expert
Task: design Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "ci_integration", "reproducibility", "repo_scale_reasoning", "security_gates" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2a06ccda13f628819d2ec3608918e864dd109f85
train_01750
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
explain
intermediate
Task: explain Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "tooling", "documentation", "tests_are_truth", "governance" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7046562a89f3ccf949aae9d74035aef0f435870b
train_01751
2026-01-01T00:00:00
Secure code generation and policy gates
explain
intermediate
Task: explain Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "reproducibility", "evaluation_metrics", "governance", "ci_integration" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
638a8870021ea18900e93c346cd0104a21eb184b
train_01752
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
patch_diff
intermediate
Task: patch_diff Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "security_gates", "evaluation_metrics", "reproducibility" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9326e1d5b7be4d0cfb3eb36f2aab7d0273dbec22
train_01753
2026-01-01T00:00:00
Self-improving agents and feedback loops
explain
intermediate
Task: explain Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "ci_integration", "tests_are_truth", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1f310dc0523f641238773b92a2535e2c1b57476e
train_01754
2026-01-01T00:00:00
Extended context and repo-scale understanding
eval
advanced
Task: eval Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "ci_integration", "documentation", "tooling" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
aa3e9e69d4a8ca5411c6ea2e0a3b110f5f4e1e33
train_01755
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
patch_diff
intermediate
Task: patch_diff Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "auditability", "documentation", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d1158260df36c7c2462e7bf2f508cbcedc1f1f80
train_01756
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
intermediate
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "security_gates", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ceb80352ed44c43ee3083666ae17a3e8802bc988
train_01757
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
agent_loop
intermediate
Task: agent_loop Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "governance", "cost_latency_tradeoffs", "reproducibility", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f9a0571553add9b4fd0b7d4585f5773339ea2352
train_01758
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
design
advanced
Task: design Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "evaluation_metrics", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
eb6e563c39de3188a24f465696b87c52740a6b8a
train_01759
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
data_pipeline
advanced
Task: data_pipeline Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "SQL", "developer_needs": [ "documentation", "ci_integration", "tests_are_truth", "tooling" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0bae9704113f2be2322c1d11f705c59e539ccce3
train_01760
2026-01-01T00:00:00
Secure code generation and policy gates
data_pipeline
expert
Task: data_pipeline Topic: Secure code generation and policy gates Difficulty: expert Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "tests_are_truth", "tooling" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
73a3a3a7be82ccf244eabb0880295372f84b6350
train_01761
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
code
advanced
Task: code Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "documentation", "governance", "tests_are_truth", "tooling" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
957dcc7e1b5714eeb4598e42df86c8ede641d537
train_01762
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
patch_diff
advanced
Task: patch_diff Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "evaluation_metrics", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c98ac729f5403de13ee616a8a20bc06a4edb1657
train_01763
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
eval
intermediate
Task: eval Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Python", "developer_needs": [ "repo_scale_reasoning", "security_gates", "tooling", "ci_integration" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f410e55ff5320c50a37d4b6bed6ab3b5d1d70ab6
train_01764
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
advanced
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "governance", "repo_scale_reasoning", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0fe6b44f28de1008e8b3cda7a7b3595d225f81bd
train_01765
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
expert
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "documentation", "tooling" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f28d9679ccdcc9902ee4de64760c0a792dc1a02f
train_01766
2026-01-01T00:00:00
Secure code generation and policy gates
explain
advanced
Task: explain Topic: Secure code generation and policy gates Difficulty: advanced Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "governance", "evaluation_metrics", "tooling" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c856b68378e0630e1c2953ea616c9e0732c383a3
train_01767
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
compare
expert
Task: compare Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "auditability", "tests_are_truth", "reproducibility" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
afc494647434a93eae23e35f324087de431457d8
train_01768
2026-01-01T00:00:00
Extended context and repo-scale understanding
data_pipeline
advanced
Task: data_pipeline Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "tooling", "security_gates", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f27d9bdfa6b25703a863f21a90ba21ec9f24fdcd
train_01769
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
data_pipeline
intermediate
Task: data_pipeline Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "documentation", "tooling", "governance", "repo_scale_reasoning" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7c8c2c6cab511cc5d8825e918c5a9891dcb58b72
train_01770
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
design
expert
Task: design Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "security_gates", "documentation" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
90a9903c9367e90f72155e25b4c5ddb3db35cac0
train_01771
2026-01-01T00:00:00
Self-improving agents and feedback loops
explain
expert
Task: explain Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "tooling", "governance", "security_gates", "ci_integration" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ff283c98d3d8a8d3bd1665f6e0eacef5e8b265c5
train_01772
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
design
advanced
Task: design Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "governance", "evaluation_metrics", "cost_latency_tradeoffs" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
21291d4ab18dc571cb8c69f3d6c8033dec051ea3
train_01773
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
review
expert
Task: review Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "tooling", "documentation", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
db958eba98718c8f67ae822df03851b974d0e40d
train_01774
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
agent_loop
intermediate
Task: agent_loop Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "TypeScript", "developer_needs": [ "auditability", "repo_scale_reasoning", "reproducibility", "governance" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3ff3dab800d024e06185106ef4182841ce96a138
train_01775
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
advanced
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "documentation", "tooling", "security_gates" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fa02bc1cd37a59ff9abf023ba4da3cbb538a15aa
train_01776
2026-01-01T00:00:00
Secure code generation and policy gates
code
expert
Task: code Topic: Secure code generation and policy gates Difficulty: expert Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "governance", "ci_integration", "tooling" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
74f126da34b79f98b322d8338711effd27ef14b1
train_01777
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
intermediate
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "security_gates", "auditability" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
16d40bf08934fbc619e0cc0cc7995f3ad436e077
train_01778
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
data_pipeline
intermediate
Task: data_pipeline Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Go", "developer_needs": [ "auditability", "cost_latency_tradeoffs", "tests_are_truth", "tooling" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
19ba6400121632d90c792214e9deacc81d1b35ea
train_01779
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
explain
advanced
Task: explain Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "security_gates", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d2cf7677e256b0a2306ca7db420c21e3f13973e7
train_01780
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
advanced
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "reproducibility", "documentation", "governance" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ec22d016b0a9a7d3c3093a4cfcd54f6499d9138d
train_01781
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
compare
intermediate
Task: compare Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "documentation", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d3dbef86dce2d2ffc0fc0048e13248976828a07a
train_01782
2026-01-01T00:00:00
Self-improving agents and feedback loops
code
expert
Task: code Topic: Self-improving agents and feedback loops Difficulty: expert Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "evaluation_metrics", "reproducibility", "documentation" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
78920b2b27bfe6fae6cffa2526204c02d186f0ac
train_01783
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
failure_analysis
expert
Task: failure_analysis Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "security_gates", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6fcd08507a6cf4583209be10af8271bb4e572e85
train_01784
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
advanced
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "evaluation_metrics", "auditability", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
53d6f61e28f241b397d2a55bab8aa6051dcb2760
train_01785
2026-01-01T00:00:00
Latency, cost, and reliability optimization
data_pipeline
intermediate
Task: data_pipeline Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "tests_are_truth", "repo_scale_reasoning", "auditability" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1031c6575a124bdd56816d0ee214f9761dce694f
train_01786
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
patch_diff
expert
Task: patch_diff Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Go", "developer_needs": [ "documentation", "security_gates", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8c5691e91140e5d117b0cd7ed34fe3b78f62b999
train_01787
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
patch_diff
intermediate
Task: patch_diff Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "documentation", "governance", "evaluation_metrics", "reproducibility" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ffe8ea4fb03d500fc5ba1508b6166a0c0e8a0450
train_01788
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
expert
Task: explain Topic: Extended context and repo-scale understanding Difficulty: expert Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "cost_latency_tradeoffs", "tooling", "governance" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c19642c90d295fdffc7453b5eccc8e7a6cd3840c
train_01789
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
patch_diff
expert
Task: patch_diff Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "C#", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "repo_scale_reasoning", "auditability" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0f1f90492109a6b798dcab8acc538b107d28e592
train_01790
2026-01-01T00:00:00
Secure code generation and policy gates
failure_analysis
expert
Task: failure_analysis Topic: Secure code generation and policy gates Difficulty: expert Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "tooling", "security_gates", "repo_scale_reasoning", "ci_integration" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e16547fd3b4037f9654e375aa4f656a3cf76b554
train_01791
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
patch_diff
intermediate
Task: patch_diff Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Bash", "developer_needs": [ "reproducibility", "governance", "tooling", "cost_latency_tradeoffs" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9478758d2f704cdd46224563f4d1b821aac87de0
train_01792
2026-01-01T00:00:00
Latency, cost, and reliability optimization
review
intermediate
Task: review Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "auditability", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9383bb3b4df5fd596d060901ae3219a4965f7533
train_01793
2026-01-01T00:00:00
Extended context and repo-scale understanding
eval
intermediate
Task: eval Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "governance", "tests_are_truth", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b6aff791552b103a75e74408eeebaa9300edebea
train_01794
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
explain
advanced
Task: explain Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "tests_are_truth", "evaluation_metrics", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d1ca9b44d733c6df700009a5ab43ef73d8d06ca0
train_01795
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
data_pipeline
expert
Task: data_pipeline Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "tooling", "ci_integration", "cost_latency_tradeoffs", "security_gates" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5169d848f02dad18d9e6f57431bb5e064db373f2
train_01796
2026-01-01T00:00:00
Secure code generation and policy gates
agent_loop
intermediate
Task: agent_loop Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "governance", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a39666940e7cb5a68304e0e2b58b141229ddf367
train_01797
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
compare
intermediate
Task: compare Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "documentation", "tests_are_truth", "tooling", "reproducibility" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8fa9ee896ce483f1a6cd05fb1b5e842bf1eeadc8
train_01798
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
intermediate
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "auditability", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9e5076117d6c9178a8692e80bbd8a4de401e5a2c
train_01799
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
expert
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "ci_integration", "documentation" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9de37f70427580b12ea23b7907404f77c4c89465