id
stringlengths 11
11
| created
timestamp[s]date 2026-01-01 00:00:00
2026-01-01 00:00:00
| topic
stringclasses 14
values | task_type
stringclasses 10
values | difficulty
stringclasses 3
values | instruction
stringlengths 189
248
| input
stringclasses 1
value | output
stringclasses 9
values | reasoning_steps
listlengths 0
5
| metadata
dict | hash
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|
train_45400
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
eval
|
expert
|
Task: eval
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"ci_integration",
"security_gates",
"reproducibility"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6aec82bf6f2abd0ae99fb41d6db090f2a1a28f8b
|
|
train_45401
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"evaluation_metrics",
"tests_are_truth",
"repo_scale_reasoning",
"auditability"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
45eb02cd139f3f032e37df466f2a157044bd9e98
|
|
train_45402
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
code
|
intermediate
|
Task: code
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"tests_are_truth",
"repo_scale_reasoning",
"tooling"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c7bc344e9c7111b0e39b7f9ed69a9ea5ac9c3f47
|
|
train_45403
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
design
|
intermediate
|
Task: design
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"security_gates",
"repo_scale_reasoning",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6048d55dd2325401c3731cce61c3808e9d680bc6
|
|
train_45404
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
review
|
advanced
|
Task: review
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"governance",
"tests_are_truth",
"reproducibility"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9851eb4b6ce909e82704cdfb39868f1f3e4cf184
|
|
train_45405
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"governance",
"reproducibility"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
851491f0b7253cc9457031cb756427de7fd88c12
|
|
train_45406
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"ci_integration"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bf8e87411264bceae0f33270cf1164c8c08b1982
|
|
train_45407
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
explain
|
advanced
|
Task: explain
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"evaluation_metrics",
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6abaa1df667758d6c0fde4b5a3aeff960e7fbb71
|
|
train_45408
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Go",
"developer_needs": [
"tooling",
"reproducibility",
"tests_are_truth",
"security_gates"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9cebff8542de10913e60e85b148459a72430de49
|
|
train_45409
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
review
|
advanced
|
Task: review
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"tests_are_truth",
"governance",
"security_gates",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a0afb1b0f7d828aa7708e4ab2939bfcaa5aabc94
|
|
train_45410
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
code
|
expert
|
Task: code
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"tooling",
"governance",
"repo_scale_reasoning",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
78920b2b27bfe6fae6cffa2526204c02d186f0ac
|
|
train_45411
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"repo_scale_reasoning",
"tooling",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3cffd4cf5f5c4895ca3ea6854f643480716a5930
|
|
train_45412
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
code
|
expert
|
Task: code
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"repo_scale_reasoning",
"tests_are_truth",
"tooling"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b9c5dca6bc639927cb35b65aaa14ed292641cd10
|
|
train_45413
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
compare
|
expert
|
Task: compare
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"documentation",
"ci_integration",
"reproducibility",
"security_gates"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d2b3c1fb17628ea819a697d66f9294a7d06680e1
|
|
train_45414
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
design
|
advanced
|
Task: design
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"security_gates",
"documentation",
"evaluation_metrics",
"ci_integration"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c97c7296f4fb558d402799da5ec4e99acbd85ff1
|
|
train_45415
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
design
|
intermediate
|
Task: design
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"ci_integration",
"governance",
"auditability"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f2f4ea26f5f2b24dbaf4f97a5839ea9f8ead2b76
|
|
train_45416
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"tests_are_truth",
"security_gates",
"reproducibility",
"repo_scale_reasoning"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
330abc29e723d1502b5ddbc9f1155f07a42e600e
|
|
train_45417
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
explain
|
expert
|
Task: explain
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"documentation",
"ci_integration",
"governance",
"security_gates"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
07154649c872c9b6ad13a62b9107e23cd06cc955
|
|
train_45418
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
eval
|
intermediate
|
Task: eval
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"governance",
"ci_integration",
"evaluation_metrics",
"auditability"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7fbf76208875f8e3cc7a2c16f83ff46deb14a481
|
|
train_45419
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
explain
|
expert
|
Task: explain
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"tooling",
"cost_latency_tradeoffs",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8f67e9790428c59c13fbe258e19a9ad7a33ae7ee
|
|
train_45420
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
explain
|
intermediate
|
Task: explain
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"repo_scale_reasoning",
"documentation",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ddd34163e10626b15e34dad08bbf66b7fb4cce02
|
|
train_45421
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"reproducibility",
"ci_integration",
"tooling",
"security_gates"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d92763bc72b91073f51052543f40176ef6deb0a2
|
|
train_45422
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
review
|
advanced
|
Task: review
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Go",
"developer_needs": [
"tooling",
"cost_latency_tradeoffs",
"repo_scale_reasoning",
"tests_are_truth"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3d9ebeac1cbaea7e9d85ca4267df6b7674bcd6c8
|
|
train_45423
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"tooling",
"cost_latency_tradeoffs",
"documentation",
"security_gates"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d88454134419e7bdf33789dbc5a9e0c3bdce035c
|
|
train_45424
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
explain
|
intermediate
|
Task: explain
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"documentation",
"governance",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0bf44260322d27e9c9403e0896d2521c3a5865fc
|
|
train_45425
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
code
|
expert
|
Task: code
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"governance",
"repo_scale_reasoning",
"tooling",
"reproducibility"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
767ac1923594a1f790bdc7cec8a45d5c39dab5aa
|
|
train_45426
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
explain
|
expert
|
Task: explain
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"reproducibility",
"documentation",
"security_gates",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
170306f94467c6f1223272f7b35942e7d08fe3c0
|
|
train_45427
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Java",
"developer_needs": [
"tests_are_truth",
"ci_integration",
"security_gates",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ea32362cbb0969ae00084011f1c3552c08e1d2f5
|
|
train_45428
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: advanced
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"governance",
"tests_are_truth"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d84484d139c18b4d1bd82630f9cff9666ffcd9bb
|
|
train_45429
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"evaluation_metrics",
"cost_latency_tradeoffs",
"governance",
"documentation"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8d0f46a1aa999978ee95c131731359e227e4af75
|
|
train_45430
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
compare
|
expert
|
Task: compare
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "C#",
"developer_needs": [
"governance",
"security_gates",
"reproducibility",
"auditability"
],
"moe_experts": [
"security_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
39addb71358d353d0237e7c5cf4e49fe97ee6e54
|
|
train_45431
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"security_gates",
"repo_scale_reasoning",
"tests_are_truth",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
889a51edcb34e0656885ea0451eec0f6343c0b42
|
|
train_45432
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
compare
|
expert
|
Task: compare
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: SQL
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"tests_are_truth",
"ci_integration",
"auditability"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e4888a1ade2272b1a531f97cb9d1a325fa55cdda
|
|
train_45433
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
compare
|
expert
|
Task: compare
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Java",
"developer_needs": [
"governance",
"cost_latency_tradeoffs",
"security_gates",
"auditability"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
dfd2c6c574c9eab48736534308bbb389612a310f
|
|
train_45434
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
design
|
expert
|
Task: design
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"evaluation_metrics",
"auditability",
"reproducibility",
"repo_scale_reasoning"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
059b678fed635ee528dba9c7e12c718c09554a47
|
|
train_45435
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"governance",
"documentation",
"ci_integration",
"tooling"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
adca71d176f6a4ff3fccf5a59d03e638c551c150
|
|
train_45436
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
eval
|
expert
|
Task: eval
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"reproducibility",
"cost_latency_tradeoffs",
"ci_integration",
"repo_scale_reasoning"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0c83b29780bbc2e5f4c41f76898ba284506f9f59
|
|
train_45437
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
explain
|
advanced
|
Task: explain
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"reproducibility",
"tests_are_truth"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e15f58c06ba9a6bbf593975bb659de1643f9d30f
|
|
train_45438
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
code
|
expert
|
Task: code
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"auditability",
"tests_are_truth",
"cost_latency_tradeoffs",
"tooling"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bb9c3bf4132ba94ac313e96c00acb93e5bb8c999
|
|
train_45439
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
eval
|
intermediate
|
Task: eval
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"auditability",
"tooling",
"reproducibility",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
19a731ab8bd981f8756e3703f3ebcb1336158318
|
|
train_45440
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Go",
"developer_needs": [
"documentation",
"security_gates",
"reproducibility",
"governance"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
680bd029f388486557d1f4de9c02fffe8654f79f
|
|
train_45441
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
design
|
expert
|
Task: design
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"auditability",
"evaluation_metrics",
"tooling",
"reproducibility"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fd1b1127d241e46b6274f42769b23797edcbed3d
|
|
train_45442
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"ci_integration",
"tooling",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b14323814b70802425ae53c56b6c482e2f593aee
|
|
train_45443
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Java",
"developer_needs": [
"auditability",
"governance",
"reproducibility",
"security_gates"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a0300692b8eb8e4cf702460ae991d761b190dca5
|
|
train_45444
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"cost_latency_tradeoffs",
"reproducibility",
"auditability",
"governance"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d3a3f3b2ff97fa6f8d590d6bf8eb8ee0a6e17841
|
|
train_45445
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
eval
|
intermediate
|
Task: eval
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"auditability",
"cost_latency_tradeoffs",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2dc71f86560434e88be57fbf25c2ccb7fba04b4c
|
|
train_45446
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
code
|
advanced
|
Task: code
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"evaluation_metrics",
"auditability",
"cost_latency_tradeoffs",
"ci_integration"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3312ab162ad54ea0323c2a071cd1afa20b0157e1
|
|
train_45447
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
review
|
intermediate
|
Task: review
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"tests_are_truth",
"security_gates"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7b825d1fa57259987c0a326d9df16747206bbb66
|
|
train_45448
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tests_are_truth",
"ci_integration",
"governance",
"reproducibility"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
00ad34a44f61ffbbe5ebe937791dd959d20b4209
|
|
train_45449
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
compare
|
advanced
|
Task: compare
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"documentation",
"security_gates",
"ci_integration",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
855fd810ffe59c02b166509d0e2abd6d5aad6062
|
|
train_45450
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"governance",
"tests_are_truth",
"tooling",
"reproducibility"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
53ccc119b3cde2e71cc00feaec48cb91d8d870c2
|
|
train_45451
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
explain
|
expert
|
Task: explain
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Java
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"ci_integration",
"tests_are_truth",
"tooling",
"auditability"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4876660cf5bb16414b3d9d6c62032aae99de79c7
|
|
train_45452
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "C#",
"developer_needs": [
"reproducibility",
"tooling",
"security_gates",
"documentation"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0ff16158788839e712049971203b062235ef4c89
|
|
train_45453
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
design
|
intermediate
|
Task: design
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"auditability",
"security_gates",
"repo_scale_reasoning",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bd4dd98229550397f7db58edf2d132f48f61d0fb
|
|
train_45454
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"governance",
"ci_integration",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b79531042cf95a55db5ad90bd49d8a642aed2686
|
|
train_45455
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
code
|
intermediate
|
Task: code
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"auditability",
"tooling",
"cost_latency_tradeoffs"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
865b909ed2e220041f356ecb5a046e156194d223
|
|
train_45456
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"auditability",
"tests_are_truth",
"reproducibility",
"ci_integration"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e6ba995b99e0b73a48beb11d6c090ed0f614a5ca
|
|
train_45457
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tests_are_truth",
"reproducibility",
"ci_integration",
"repo_scale_reasoning"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cdde8b5c36cb59ae1f692edadb3dd9a16b977780
|
|
train_45458
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
code
|
expert
|
Task: code
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"governance",
"reproducibility",
"cost_latency_tradeoffs"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
781c9994f2bdbe45739d6b6e0a7145a3d3ba0891
|
|
train_45459
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"ci_integration",
"documentation",
"governance"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4c6079fdb7cb469b855c2c79125e03b684165c08
|
|
train_45460
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
compare
|
expert
|
Task: compare
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"tests_are_truth",
"ci_integration",
"security_gates",
"reproducibility"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1087713866939887d947f06be605f1b69be33bbb
|
|
train_45461
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Java",
"developer_needs": [
"governance",
"tooling",
"security_gates",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
365ea6aeea9a99df971366a2b39779703d21e451
|
|
train_45462
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
review
|
intermediate
|
Task: review
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"reproducibility",
"governance",
"evaluation_metrics",
"security_gates"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d494d2169b295f6dbf25c370c3e9ede534e9e5dc
|
|
train_45463
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "C#",
"developer_needs": [
"governance",
"auditability",
"evaluation_metrics",
"tooling"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c45071c31d39f7bec084a48276b42fa695636800
|
|
train_45464
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
review
|
expert
|
Task: review
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Java",
"developer_needs": [
"documentation",
"evaluation_metrics",
"ci_integration",
"security_gates"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b860f9bdea721c12de9f8d80720c2a78fb887075
|
|
train_45465
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"tooling",
"auditability"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ce0b8f38d460f94ca5246a6f24e41b0b1c5af70d
|
|
train_45466
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"documentation",
"security_gates",
"auditability",
"reproducibility"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
35bf0bebae0d019e7c864519ea7666d5cdaa3d80
|
|
train_45467
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
compare
|
advanced
|
Task: compare
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"governance",
"tooling",
"documentation",
"ci_integration"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bfe54c1f9d3e8160c8a35bcbcdee2223230f4bb3
|
|
train_45468
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
eval
|
intermediate
|
Task: eval
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Java",
"developer_needs": [
"governance",
"evaluation_metrics",
"tooling",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ad22dbbd04fdbfdeb6ac521cb9c3a35075c81a7d
|
|
train_45469
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: SQL
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"security_gates",
"reproducibility",
"cost_latency_tradeoffs",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cc6c5adf1df28ae0b5dc363fe7eea8187a2e46e2
|
|
train_45470
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
eval
|
intermediate
|
Task: eval
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"tests_are_truth",
"reproducibility",
"evaluation_metrics",
"security_gates"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
84111df6673efa837be24e2b4060bf0ace3aa540
|
|
train_45471
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Python",
"developer_needs": [
"repo_scale_reasoning",
"security_gates",
"tests_are_truth",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c018a5561d0c945fb2a6276effa39d074b71650b
|
|
train_45472
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
design
|
advanced
|
Task: design
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"evaluation_metrics",
"repo_scale_reasoning",
"tooling"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
15988a8a8144a2dd22da42a552ffe8248ef26b5e
|
|
train_45473
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
explain
|
advanced
|
Task: explain
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"documentation",
"tooling",
"repo_scale_reasoning",
"governance"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
19009fdb6f1b59f34c5eda5d4931a02e54b6499e
|
|
train_45474
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"repo_scale_reasoning",
"ci_integration",
"security_gates",
"tests_are_truth"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bcafe62777ab4de08e2b41836646228f4ddf592a
|
|
train_45475
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"ci_integration",
"auditability",
"tests_are_truth",
"reproducibility"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c45397c1adcab884131d022ff1e346712a12c1e9
|
|
train_45476
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
eval
|
intermediate
|
Task: eval
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"repo_scale_reasoning",
"ci_integration",
"governance",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
84c23ad6a4d5614590f772a6cb9bcdca741c7a50
|
|
train_45477
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
compare
|
advanced
|
Task: compare
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"repo_scale_reasoning",
"tooling"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
5ad213088ebfa4db02c4b9df9d1c1397abd0a7b7
|
|
train_45478
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
design
|
expert
|
Task: design
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"governance",
"cost_latency_tradeoffs",
"evaluation_metrics"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b146572cd26ea0f7cc87bee24a14b20f513ecbbb
|
|
train_45479
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
design
|
advanced
|
Task: design
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"reproducibility",
"documentation",
"repo_scale_reasoning",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7d3ea98e925864bb10520d499f6d4f9c4f406bf5
|
|
train_45480
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
code
|
intermediate
|
Task: code
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"tests_are_truth",
"repo_scale_reasoning",
"evaluation_metrics",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0ee20d4ab15c0f0f77b3f9d924e969745891661d
|
|
train_45481
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
design
|
expert
|
Task: design
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"repo_scale_reasoning",
"security_gates",
"tooling",
"documentation"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7b25224a2827f151d2e63b00f4a4bef618be25e7
|
|
train_45482
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
eval
|
intermediate
|
Task: eval
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"security_gates",
"documentation",
"auditability",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f5f36341d9e03a421c3285570dd03f422bf6b0c7
|
|
train_45483
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
eval
|
advanced
|
Task: eval
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"evaluation_metrics",
"reproducibility",
"repo_scale_reasoning",
"tooling"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cf580dd9d2084bd2be9c0b5d413267e3b954a097
|
|
train_45484
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
review
|
intermediate
|
Task: review
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Java",
"developer_needs": [
"ci_integration",
"tooling",
"auditability",
"evaluation_metrics"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cfea92171a9a66a699403489d2f7af16be102f45
|
|
train_45485
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
eval
|
advanced
|
Task: eval
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"ci_integration",
"security_gates",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9b9ace2188694902cef786f933c6df2af9a6ae6c
|
|
train_45486
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
eval
|
expert
|
Task: eval
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Java",
"developer_needs": [
"governance",
"documentation",
"security_gates",
"cost_latency_tradeoffs"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
29ef928139b9b1ed0b86580657759d90777bde46
|
|
train_45487
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
review
|
intermediate
|
Task: review
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: intermediate
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Java",
"developer_needs": [
"documentation",
"evaluation_metrics",
"cost_latency_tradeoffs",
"ci_integration"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
79b52a69073c8335a9a59f36375a773fdf790221
|
|
train_45488
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
compare
|
expert
|
Task: compare
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"ci_integration",
"reproducibility",
"documentation",
"auditability"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0118ade6aa42a4a569832f1426720bd1f8672ca5
|
|
train_45489
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"tests_are_truth",
"evaluation_metrics",
"ci_integration",
"documentation"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d5f68335b03116b06f06237722cc93adcd401f4d
|
|
train_45490
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
explain
|
expert
|
Task: explain
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"documentation",
"reproducibility",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1bb0cdb6c4226336fc96b9d21b6720758297cae1
|
|
train_45491
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
code
|
advanced
|
Task: code
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"governance",
"security_gates",
"tooling"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f41e29790975a860a248fa51c080fdec1729c0e0
|
|
train_45492
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Latency, cost, and reliability optimization
Difficulty: expert
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"security_gates",
"evaluation_metrics",
"tooling",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
978ab70870cefbbc392980ab052f9c12af64d592
|
|
train_45493
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
review
|
expert
|
Task: review
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: TypeScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"documentation",
"auditability",
"cost_latency_tradeoffs",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b08391781014ebdb89f90be5ea39ae647d9af77d
|
|
train_45494
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
design
|
expert
|
Task: design
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"governance",
"repo_scale_reasoning",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"governance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c07ec15e4ac92435534c29e0533df1e6e37946eb
|
|
train_45495
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
code
|
intermediate
|
Task: code
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"evaluation_metrics",
"reproducibility",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c98fe176a7ddb044fbc613675cee5064e2095746
|
|
train_45496
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
eval
|
advanced
|
Task: eval
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: Bash
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"governance",
"security_gates",
"tests_are_truth"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c6f90a393e4caa8b28cef784bf28b3a2c71e54c6
|
|
train_45497
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"tests_are_truth",
"repo_scale_reasoning",
"documentation"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
af80e041f7f3e52d03a0963bb5f9cd106ddb3ae7
|
|
train_45498
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
design
|
intermediate
|
Task: design
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"documentation",
"security_gates",
"governance",
"repo_scale_reasoning"
],
"moe_experts": [
"agentic_systems_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cc4a4ff6f04f47b1ab7371a958a5c8d37e184a64
|
|
train_45499
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
review
|
expert
|
Task: review
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"tests_are_truth",
"auditability",
"documentation",
"evaluation_metrics"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a827f3c9a9c5bdb3775f0dba55b9876c48b37579
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.