id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
14 values
task_type
stringclasses
10 values
difficulty
stringclasses
3 values
instruction
stringlengths
189
248
input
stringclasses
1 value
output
stringclasses
9 values
reasoning_steps
listlengths
0
5
metadata
dict
hash
stringlengths
40
40
train_47500
2026-01-01T00:00:00
Self-improving agents and feedback loops
agent_loop
intermediate
Task: agent_loop Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Rust", "developer_needs": [ "tooling", "reproducibility", "governance", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a350f78821fb775d4994038d511af086f26dabc6
train_47501
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
design
intermediate
Task: design Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "governance", "reproducibility", "security_gates", "ci_integration" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
39c93383f5dd8807ddfb4f8f59d019eb2fac15e4
train_47502
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
explain
advanced
Task: explain Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "security_gates", "documentation", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
98839e2634cada7c50404f3ef0206fdb128acc01
train_47503
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
explain
advanced
Task: explain Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "governance", "reproducibility" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1652adfc42be79ae3b26ae58ddc276765388f5e0
train_47504
2026-01-01T00:00:00
Latency, cost, and reliability optimization
review
expert
Task: review Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "repo_scale_reasoning", "ci_integration", "security_gates" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d772a6290b841a6b4b4882b6058b5c5fb048a425
train_47505
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
review
intermediate
Task: review Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "tests_are_truth", "auditability", "security_gates", "reproducibility" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6f1b0822b3ab47d89c5a64be3f28479c1ecd923c
train_47506
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
data_pipeline
intermediate
Task: data_pipeline Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Go", "developer_needs": [ "tooling", "auditability", "evaluation_metrics", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9cd1e5d14987df743152de1f33787452a481d826
train_47507
2026-01-01T00:00:00
Secure code generation and policy gates
design
advanced
Task: design Topic: Secure code generation and policy gates Difficulty: advanced Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "auditability", "cost_latency_tradeoffs", "security_gates", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b7738fcc0eaed121fece69da87b6f262b5c02e70
train_47508
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
data_pipeline
intermediate
Task: data_pipeline Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "tooling", "documentation", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4e2c00c4843ceb175b78b3b6b8f7fd3d21a2a6e9
train_47509
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
patch_diff
expert
Task: patch_diff Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "tooling", "auditability", "reproducibility" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a8c3ee8e052abe1635f0ae59db99c6073ff08abf
train_47510
2026-01-01T00:00:00
Self-improving agents and feedback loops
compare
advanced
Task: compare Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "governance", "cost_latency_tradeoffs", "documentation" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
780ba11b521df7e73a97ead9393aeee1444e5e1c
train_47511
2026-01-01T00:00:00
Secure code generation and policy gates
compare
advanced
Task: compare Topic: Secure code generation and policy gates Difficulty: advanced Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Go", "developer_needs": [ "auditability", "security_gates", "tooling", "tests_are_truth" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
563e53409d48836a88dd16b7467254b4e27725f2
train_47512
2026-01-01T00:00:00
Latency, cost, and reliability optimization
code
expert
Task: code Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "ci_integration", "tooling", "documentation" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6e716811a15bb8ea27ffb050c60db85ddffba48b
train_47513
2026-01-01T00:00:00
Self-improving agents and feedback loops
code
intermediate
Task: code Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[]
{ "target_language": "Python", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "documentation", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a82c53b10dc1cba33804c7ee146cf8e4b03c335d
train_47514
2026-01-01T00:00:00
Self-improving agents and feedback loops
review
expert
Task: review Topic: Self-improving agents and feedback loops Difficulty: expert Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "ci_integration", "evaluation_metrics", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
727eac7de664780600e9bfd8b675ea346231d53e
train_47515
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
eval
intermediate
Task: eval Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "reproducibility", "ci_integration" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e34003a28d0f2eab6d7875e1e142b04849bbfee6
train_47516
2026-01-01T00:00:00
Self-improving agents and feedback loops
review
intermediate
Task: review Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "tests_are_truth", "tooling" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
92d925411de9e441c577cdcc729796d9236dbfbf
train_47517
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
review
advanced
Task: review Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "auditability", "reproducibility", "ci_integration" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b9e1b652ca48644fa41a440cfc7aa16573f9c3a9
train_47518
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
intermediate
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "evaluation_metrics", "tooling", "governance" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
825e4c254fcc635367b6d2fcceb85337ed90c5b8
train_47519
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
data_pipeline
intermediate
Task: data_pipeline Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "ci_integration", "auditability", "documentation", "tooling" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4be3712f9995664f320d2699227e29d9fe2bd99b
train_47520
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
agent_loop
intermediate
Task: agent_loop Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Java", "developer_needs": [ "governance", "tests_are_truth", "ci_integration", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d376ef0fb8b50840debf0af6167c1c5b06b8954e
train_47521
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
patch_diff
advanced
Task: patch_diff Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Java", "developer_needs": [ "ci_integration", "governance", "tests_are_truth", "security_gates" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2878dd91d5796bc9b1a17ef72e6b5e963ee21754
train_47522
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
compare
advanced
Task: compare Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "auditability", "reproducibility", "governance", "security_gates" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c14222e2d95ab5a53e0920ca5d8372680e4dfaf3
train_47523
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
eval
advanced
Task: eval Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Java", "developer_needs": [ "tooling", "tests_are_truth", "auditability", "evaluation_metrics" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5ffa84ee14c0446342a78125b380bec3fc92dd6d
train_47524
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
compare
intermediate
Task: compare Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "C#", "developer_needs": [ "tooling", "reproducibility", "cost_latency_tradeoffs", "security_gates" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
43db73511978e03a66fd24f3a944050c8d936873
train_47525
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
intermediate
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "auditability", "tooling" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f4c14cc0fc365959d7a90afa572002c492af50eb
train_47526
2026-01-01T00:00:00
Secure code generation and policy gates
failure_analysis
expert
Task: failure_analysis Topic: Secure code generation and policy gates Difficulty: expert Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "governance", "tooling", "reproducibility", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
dfad2fe9d224cc68a0c35b5bc978980166106484
train_47527
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
code
intermediate
Task: code Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "evaluation_metrics", "security_gates", "ci_integration", "auditability" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b940aa023275f06942fa491a96d5e90e9fa99cab
train_47528
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
code
intermediate
Task: code Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "documentation", "security_gates", "ci_integration", "reproducibility" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0cd4e8b3e35fce4fbe4980d6c698f1a887bafad9
train_47529
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
eval
advanced
Task: eval Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "auditability", "ci_integration", "tests_are_truth", "documentation" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c46bf7619015e4ffa107dcf8c65bf84568396743
train_47530
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
advanced
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "tooling", "documentation", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5764d26b06a04e627c200a338edfbe25edad3374
train_47531
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
agent_loop
expert
Task: agent_loop Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Bash", "developer_needs": [ "reproducibility", "documentation", "auditability", "security_gates" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2dcc7dd4e77e13279ae51e82201a3d52d7f01cf9
train_47532
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
code
intermediate
Task: code Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "auditability", "security_gates", "tooling" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
25aa2250d710a2007491305b9539e6ae31e4a4d6
train_47533
2026-01-01T00:00:00
Self-improving agents and feedback loops
failure_analysis
intermediate
Task: failure_analysis Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "evaluation_metrics", "security_gates", "governance", "documentation" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f2bd519b60c0afa8e1de002ba5fd748a622e1765
train_47534
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
data_pipeline
intermediate
Task: data_pipeline Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "TypeScript", "developer_needs": [ "security_gates", "tests_are_truth", "ci_integration", "auditability" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d6c024ed744735eb47e0a9aa8d821affe2a1c05a
train_47535
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
design
advanced
Task: design Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "documentation", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6a5330be73c8ad7c9effa3647b1e6da76d1e66b5
train_47536
2026-01-01T00:00:00
Self-improving agents and feedback loops
design
intermediate
Task: design Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "reproducibility", "auditability" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ffb5af248f6d71fdc182b1995cd227b257e4599b
train_47537
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
explain
expert
Task: explain Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "tooling", "cost_latency_tradeoffs" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
166d2b9329d42404129d039839b7d14dc12febf3
train_47538
2026-01-01T00:00:00
Self-improving agents and feedback loops
eval
expert
Task: eval Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "documentation", "tooling", "security_gates" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a53150fc9fea421c3bef73e76f9adf88d5944ca1
train_47539
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
failure_analysis
intermediate
Task: failure_analysis Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Python", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "security_gates", "ci_integration" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
907baf22d69990a88f6bb82094d6f017cb71e8f6
train_47540
2026-01-01T00:00:00
Latency, cost, and reliability optimization
explain
expert
Task: explain Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "auditability", "tooling", "reproducibility", "documentation" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
264aa07c9b9b6e5ee6471c3c5bf019a98ddcb0ee
train_47541
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
agent_loop
intermediate
Task: agent_loop Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "tooling", "auditability" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c7c722963563fab13abe34f5b06844451af55cb0
train_47542
2026-01-01T00:00:00
Self-improving agents and feedback loops
code
advanced
Task: code Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "cost_latency_tradeoffs", "governance", "ci_integration", "reproducibility" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
81808e553142096e1e5584dcfe77ba318ddb414b
train_47543
2026-01-01T00:00:00
Extended context and repo-scale understanding
failure_analysis
advanced
Task: failure_analysis Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "documentation", "auditability" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a7c88598c70878d989f4f474e3ba7edf0eb59754
train_47544
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
failure_analysis
intermediate
Task: failure_analysis Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "security_gates", "evaluation_metrics", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2be88a2f9a411c24e21c9b8e392699eabfef58d3
train_47545
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
advanced
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[]
{ "target_language": "Python", "developer_needs": [ "tests_are_truth", "tooling", "evaluation_metrics", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
42b43ebfb3506368667e1f0abe23c7551a258817
train_47546
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
agent_loop
expert
Task: agent_loop Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "reproducibility", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
38dd9970493480e9438f95a0c842a2ec48ee6678
train_47547
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
compare
intermediate
Task: compare Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "documentation", "tests_are_truth", "governance" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cde3c7d6acd3a71be6d0269d2b46f754218538b3
train_47548
2026-01-01T00:00:00
Latency, cost, and reliability optimization
explain
advanced
Task: explain Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a9b6a5f9c7d4c019a68688162777a2521177a970
train_47549
2026-01-01T00:00:00
Self-improving agents and feedback loops
data_pipeline
intermediate
Task: data_pipeline Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "ci_integration", "tooling", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ec269ecf28a893834f7b228ccd2b3353521be186
train_47550
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
intermediate
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "reproducibility", "security_gates", "tooling", "tests_are_truth" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
de8b87756832be47d89ca31867bfe4bc7130b44f
train_47551
2026-01-01T00:00:00
Extended context and repo-scale understanding
code
expert
Task: code Topic: Extended context and repo-scale understanding Difficulty: expert Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "security_gates", "evaluation_metrics", "ci_integration", "tests_are_truth" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d131bb3522c1ff551a7bf3ec74d60337b8092183
train_47552
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
explain
expert
Task: explain Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "security_gates", "documentation", "tests_are_truth", "reproducibility" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3707eaf7d2814f3d8599dac4512f88c8ea00c4ec
train_47553
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
failure_analysis
expert
Task: failure_analysis Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "SQL", "developer_needs": [ "auditability", "evaluation_metrics", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3e84ffe4360b8c72447035fb4bdf77957e4cd6b3
train_47554
2026-01-01T00:00:00
Extended context and repo-scale understanding
data_pipeline
expert
Task: data_pipeline Topic: Extended context and repo-scale understanding Difficulty: expert Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "ci_integration", "reproducibility", "auditability" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e5e454507274b4b95a9168a33914b61c39ade27d
train_47555
2026-01-01T00:00:00
Self-improving agents and feedback loops
code
advanced
Task: code Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "auditability", "evaluation_metrics", "repo_scale_reasoning", "security_gates" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
665099c93d14093c7e31f869b11f8ed6583430d3
train_47556
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
patch_diff
intermediate
Task: patch_diff Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Java", "developer_needs": [ "tooling", "documentation", "repo_scale_reasoning", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
96e71c02541f187371acada127ef3d91176addc2
train_47557
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
failure_analysis
intermediate
Task: failure_analysis Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "auditability", "tooling", "reproducibility" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b5b262ea8a1978dc1c179d00dd9a05ed292c9c2c
train_47558
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
advanced
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "auditability", "security_gates", "repo_scale_reasoning", "documentation" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
81585c228021d39a6236ac567581dab83f9f8a8d
train_47559
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
patch_diff
intermediate
Task: patch_diff Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "SQL", "developer_needs": [ "auditability", "evaluation_metrics", "reproducibility", "governance" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fae6758a4cea977c8d3dc2de4146ab18b0a0b444
train_47560
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
explain
expert
Task: explain Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "tooling", "repo_scale_reasoning", "documentation" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
47f97d79a6eec426ec99258892dba3f094733a4b
train_47561
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
compare
intermediate
Task: compare Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "evaluation_metrics", "cost_latency_tradeoffs", "reproducibility", "documentation" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9397d095e22a584736b61ba239696a05ec384d54
train_47562
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
compare
expert
Task: compare Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "repo_scale_reasoning", "security_gates", "governance", "reproducibility" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
049594df47c84809364b96b777dd2d9ad7de460d
train_47563
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
eval
intermediate
Task: eval Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "auditability", "tooling", "tests_are_truth", "reproducibility" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7165ffdf2d0915b2ede3cdc01e12a7e90d9d39d1
train_47564
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
compare
intermediate
Task: compare Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "governance", "tooling", "security_gates", "tests_are_truth" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5069932daa1bc90f0d208b27af2e95e039cea86c
train_47565
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
agent_loop
expert
Task: agent_loop Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "ci_integration", "governance" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1bd4e3762ac92d6b109da2cf232f9cbcf71bbaac
train_47566
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
patch_diff
advanced
Task: patch_diff Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "evaluation_metrics", "security_gates", "tests_are_truth", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e2bcf02d2c096b6337567adc48b26059269c4ceb
train_47567
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
review
advanced
Task: review Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "security_gates", "repo_scale_reasoning", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
95df3e09de11387d6fc7a3c13041904b75459a79
train_47568
2026-01-01T00:00:00
Self-improving agents and feedback loops
explain
advanced
Task: explain Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "auditability", "cost_latency_tradeoffs", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
57d151272b74c75c58bb6503388c9f8a16488221
train_47569
2026-01-01T00:00:00
Secure code generation and policy gates
code
intermediate
Task: code Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "auditability", "cost_latency_tradeoffs", "governance", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d722b93bbfe7c2d8cb5914a96508b5cbd11c1a47
train_47570
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
data_pipeline
advanced
Task: data_pipeline Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "governance", "reproducibility", "documentation" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ba2c046fb5bea3a38a2cc19193400bd4f176ce4b
train_47571
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
review
expert
Task: review Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "tooling", "repo_scale_reasoning", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c690acbf53690aa9f2a2bae9251b2886c5f762b3
train_47572
2026-01-01T00:00:00
Secure code generation and policy gates
agent_loop
expert
Task: agent_loop Topic: Secure code generation and policy gates Difficulty: expert Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
97cdb7c198a1697f91664b8bc04827ff585d9ea6
train_47573
2026-01-01T00:00:00
Extended context and repo-scale understanding
eval
expert
Task: eval Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "ci_integration", "governance", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c5ecebac2cab0654cf9eb6f492d4949f654ec599
train_47574
2026-01-01T00:00:00
Extended context and repo-scale understanding
code
advanced
Task: code Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "documentation", "governance", "auditability" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8629bc1e099d279efafa5d1562f25352bc1e40c8
train_47575
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
expert
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "tooling", "tests_are_truth", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d4ee6163e373b8c9d857c0eba9eb49912bd83f6c
train_47576
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
code
intermediate
Task: code Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "tests_are_truth", "reproducibility", "evaluation_metrics", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
096cfe53af6c5aada085750e1471826cb793151b
train_47577
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
code
intermediate
Task: code Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "reproducibility", "documentation" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
70d10286eacf298fc2cc18f680aef7fb92c7bb3b
train_47578
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
expert
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "reproducibility", "security_gates", "auditability", "documentation" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b23deb30c46616b98ad199c00744c5096008ce39
train_47579
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
advanced
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "tooling", "repo_scale_reasoning", "auditability", "governance" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ccb14d32989bf8e7e49d0e31219366f52e6e9730
train_47580
2026-01-01T00:00:00
Extended context and repo-scale understanding
review
advanced
Task: review Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "tooling", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4cbfe77fd04e38108d7d445c4a53d0554f6d8182
train_47581
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
review
advanced
Task: review Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "governance", "repo_scale_reasoning", "tooling" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
eb10dd3d892dcfae7c2505d6f8f2e7011cae3016
train_47582
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
agent_loop
expert
Task: agent_loop Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "security_gates", "reproducibility", "documentation" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0698fa67edd5751fbf83251bd1b07aae790c155a
train_47583
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
agent_loop
expert
Task: agent_loop Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Go", "developer_needs": [ "repo_scale_reasoning", "documentation", "tests_are_truth", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6f4075effe229aa27c83bbd0f74d6f0e0d904a28
train_47584
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
advanced
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "governance", "documentation", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
19009fdb6f1b59f34c5eda5d4931a02e54b6499e
train_47585
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
data_pipeline
intermediate
Task: data_pipeline Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "evaluation_metrics", "reproducibility" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
16f6e237461e76149fb67a9214e2b017edb309e3
train_47586
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
advanced
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "governance", "tooling", "security_gates" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
95e3a60a594cc77f0e9a51cf331ea965ac3cf12c
train_47587
2026-01-01T00:00:00
Secure code generation and policy gates
explain
intermediate
Task: explain Topic: Secure code generation and policy gates Difficulty: intermediate Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "security_gates", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
56598f526666cb03f3148b74a8e20b353b66d3e6
train_47588
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
agent_loop
advanced
Task: agent_loop Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "ci_integration", "cost_latency_tradeoffs", "governance", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
39ceb873ddcd250b3df54f7af3be934bff6cf816
train_47589
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
eval
expert
Task: eval Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "security_gates", "ci_integration", "auditability" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7330ac8b06ca156ea6fe32ea66ca71c5c31462c2
train_47590
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
review
intermediate
Task: review Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "governance", "repo_scale_reasoning", "evaluation_metrics", "security_gates" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3faebf18c7c4223ca96a8dc65e28f7cbcf679796
train_47591
2026-01-01T00:00:00
Latency, cost, and reliability optimization
failure_analysis
intermediate
Task: failure_analysis Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Python", "developer_needs": [ "auditability", "governance", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e9492808c8825ff19f183cfffa2af785b37185ec
train_47592
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
code
advanced
Task: code Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "reproducibility", "evaluation_metrics", "tests_are_truth", "governance" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
628156ae0be9347d2e8d664e126abd3870767a7f
train_47593
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
data_pipeline
intermediate
Task: data_pipeline Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "C#", "developer_needs": [ "auditability", "governance", "tooling", "tests_are_truth" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f3bd8ec65917d76745d3931754fb6f48e341a966
train_47594
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
failure_analysis
advanced
Task: failure_analysis Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "auditability", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1753ad5d5602be652ee03386292828a85c7b19cd
train_47595
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
intermediate
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "governance", "tests_are_truth", "repo_scale_reasoning" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2e4037738061c37389b316435cc27adc38918a59
train_47596
2026-01-01T00:00:00
Self-improving agents and feedback loops
failure_analysis
advanced
Task: failure_analysis Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Python", "developer_needs": [ "evaluation_metrics", "reproducibility", "governance", "auditability" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3fa508a9aaf69ff95b1f42e7e0b4e6d604d3d4c3
train_47597
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
explain
intermediate
Task: explain Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "security_gates", "tests_are_truth", "tooling" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
08336c5bdee75f83c243b3bff4ce21d7e2e4e9c2
train_47598
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
code
expert
Task: code Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "governance", "tests_are_truth", "reproducibility", "auditability" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5f99d9680da1414912bfd8618dbf4ebd3c671c23
train_47599
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
design
expert
Task: design Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "documentation", "tests_are_truth", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
acc4f570e322ef62f6d0cff06232f56f081f5461