id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
14 values
task_type
stringclasses
10 values
difficulty
stringclasses
3 values
instruction
stringlengths
189
248
input
stringclasses
1 value
output
stringclasses
9 values
reasoning_steps
listlengths
0
5
metadata
dict
hash
stringlengths
40
40
train_48500
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
expert
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "ci_integration", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d80734768b710b8f78d8f250782f9efd351f96db
train_48501
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
design
intermediate
Task: design Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Java", "developer_needs": [ "tests_are_truth", "repo_scale_reasoning", "auditability", "tooling" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
23e339235150089ca56e698cab96a597f093dbbb
train_48502
2026-01-01T00:00:00
Secure code generation and policy gates
compare
expert
Task: compare Topic: Secure code generation and policy gates Difficulty: expert Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "cost_latency_tradeoffs", "documentation", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0e0983256e69717b5018610d52eaf4b71f2f960d
train_48503
2026-01-01T00:00:00
Secure code generation and policy gates
agent_loop
intermediate
Task: agent_loop Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "governance", "reproducibility", "auditability", "tooling" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
98aaf9e0feb8b0330d4723bea39cb6ae4ec3f867
train_48504
2026-01-01T00:00:00
Extended context and repo-scale understanding
failure_analysis
intermediate
Task: failure_analysis Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Python", "developer_needs": [ "security_gates", "reproducibility", "evaluation_metrics", "governance" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f1930328c2742b284038513464a7ea111d7e464c
train_48505
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
intermediate
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "auditability", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d6bfdf3f2166ad012f89211d5a7cf232187b45ff
train_48506
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
intermediate
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "tests_are_truth", "documentation", "evaluation_metrics" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1aceab1a02331f71eec01114eb3e206b78f45e0d
train_48507
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
eval
advanced
Task: eval Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "SQL", "developer_needs": [ "governance", "tests_are_truth", "reproducibility", "documentation" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a72e29965e59aadd1b4a4eacb6d5156ab0db3b57
train_48508
2026-01-01T00:00:00
Self-improving agents and feedback loops
eval
expert
Task: eval Topic: Self-improving agents and feedback loops Difficulty: expert Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "ci_integration", "documentation" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f86f21ff3c4dadcce1e18c09f7e11d7329474f92
train_48509
2026-01-01T00:00:00
Latency, cost, and reliability optimization
review
expert
Task: review Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "governance", "reproducibility", "security_gates" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f27fdf6511d049cbc62aa177a76974b5df655686
train_48510
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
expert
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "tooling", "tests_are_truth", "reproducibility", "security_gates" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
794190f36cb689e607aaa2977c577a250ec55c41
train_48511
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
design
intermediate
Task: design Topic: Reasoning-first coding models and tunable deliberation Difficulty: intermediate Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "auditability", "ci_integration", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7b1676a0a99ced1d138c650f52d071298d88e9e2
train_48512
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
code
intermediate
Task: code Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "evaluation_metrics", "ci_integration", "repo_scale_reasoning", "tests_are_truth" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
895b1e1cc947347695d8e694ba91181d79630187
train_48513
2026-01-01T00:00:00
Extended context and repo-scale understanding
compare
expert
Task: compare Topic: Extended context and repo-scale understanding Difficulty: expert Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "governance", "evaluation_metrics", "reproducibility", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b84a515a0ab83576db43463451ae835805af2478
train_48514
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
agent_loop
advanced
Task: agent_loop Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "security_gates", "ci_integration", "auditability", "tests_are_truth" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8a1610bb85516d82c5df8fb0bda4d47b1abbb720
train_48515
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
code
advanced
Task: code Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "reproducibility", "security_gates", "tooling" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e69dd797687dd8726ae30bbea84094697b7bdfd4
train_48516
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
design
intermediate
Task: design Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "repo_scale_reasoning", "evaluation_metrics", "tooling" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a5859e6a49df1135e92573ab00d3e480f5cec1a8
train_48517
2026-01-01T00:00:00
Secure code generation and policy gates
patch_diff
intermediate
Task: patch_diff Topic: Secure code generation and policy gates Difficulty: intermediate Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "auditability", "ci_integration" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
086fb378f84a67d5449906135e62835ae3089dbd
train_48518
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
expert
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "reproducibility", "tooling", "repo_scale_reasoning", "security_gates" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
dcf9fd7cc2a550e5e3f0080899c8ab2076920ddb
train_48519
2026-01-01T00:00:00
Self-improving agents and feedback loops
compare
expert
Task: compare Topic: Self-improving agents and feedback loops Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "SQL", "developer_needs": [ "auditability", "cost_latency_tradeoffs", "documentation", "ci_integration" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9af398ceb135ec07e106d90d4362a500f36c23a3
train_48520
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
eval
expert
Task: eval Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "documentation", "tooling" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
95e6cf5a69b45016cf703ee9145ee6644f9b6b95
train_48521
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
failure_analysis
intermediate
Task: failure_analysis Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "evaluation_metrics", "cost_latency_tradeoffs", "tests_are_truth", "security_gates" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0eabf520cea127a29430e5f4e385f2c8d6b4f193
train_48522
2026-01-01T00:00:00
Self-improving agents and feedback loops
eval
expert
Task: eval Topic: Self-improving agents and feedback loops Difficulty: expert Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "ci_integration", "auditability", "tests_are_truth" ], "moe_experts": [ "evaluation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5d03ebc4f2f209516718874f0f02506d5cb2baaa
train_48523
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
data_pipeline
expert
Task: data_pipeline Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "TypeScript", "developer_needs": [ "reproducibility", "auditability", "evaluation_metrics", "tooling" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1d8fb92b815e2d3c8957565b3ad01c8c3b106f52
train_48524
2026-01-01T00:00:00
Latency, cost, and reliability optimization
review
expert
Task: review Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "tests_are_truth", "reproducibility", "cost_latency_tradeoffs" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0a900d217452a73ba952efcfaa678cd0a7f04b09
train_48525
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
expert
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "security_gates", "auditability", "repo_scale_reasoning", "ci_integration" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4880967ec84cf26cd31fbed45fd38bd58471b818
train_48526
2026-01-01T00:00:00
Self-improving agents and feedback loops
design
advanced
Task: design Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "reproducibility", "security_gates", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d006ac430b5e1d79f0f92222ea12ea077846f78e
train_48527
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
eval
expert
Task: eval Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "ci_integration", "security_gates", "tooling" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5993ad71f417e23d6dd64453be4236defd0de693
train_48528
2026-01-01T00:00:00
Secure code generation and policy gates
patch_diff
advanced
Task: patch_diff Topic: Secure code generation and policy gates Difficulty: advanced Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "governance", "auditability", "repo_scale_reasoning" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0867cf4476cc7cb09528794770dc800665dbf536
train_48529
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
patch_diff
advanced
Task: patch_diff Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Bash", "developer_needs": [ "governance", "documentation", "cost_latency_tradeoffs", "evaluation_metrics" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9470f88bbf7655cda691db766524009f00cbdb5e
train_48530
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
explain
intermediate
Task: explain Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "auditability", "governance", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ffcbe80116ec4ba122b71b76eb0e99e47cd58f46
train_48531
2026-01-01T00:00:00
Latency, cost, and reliability optimization
eval
intermediate
Task: eval Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "auditability", "evaluation_metrics", "tests_are_truth", "governance" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
268e41bc8fbb5397824dc23c175066f15cc2b98c
train_48532
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
review
expert
Task: review Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "tooling", "ci_integration", "reproducibility" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7531a5a7be2bd2420e163d2853eb77df1c1cfa28
train_48533
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
code
intermediate
Task: code Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Go Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "ci_integration", "cost_latency_tradeoffs", "documentation", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
50933541e70ebf4446d31d20efc2c0533ebca47e
train_48534
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
intermediate
Task: explain Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "evaluation_metrics", "reproducibility", "governance" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9fdfbb0ba4fdea10a7471bb2b1c93979bea640f3
train_48535
2026-01-01T00:00:00
Latency, cost, and reliability optimization
code
expert
Task: code Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "tooling", "governance", "documentation", "tests_are_truth" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c8f5401e9d327aac096856adbe3ab1918995fa71
train_48536
2026-01-01T00:00:00
Self-improving agents and feedback loops
compare
expert
Task: compare Topic: Self-improving agents and feedback loops Difficulty: expert Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "governance", "tooling" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
691e3f51693564664f1dce49db364981383e48bf
train_48537
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
intermediate
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "auditability", "cost_latency_tradeoffs", "documentation", "governance" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ab7800b3fc708cc87011c82f2621d707a822159f
train_48538
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
data_pipeline
advanced
Task: data_pipeline Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "auditability", "repo_scale_reasoning", "security_gates" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d64c37c649623f50ab92a59fb5c64b6549cc7ddc
train_48539
2026-01-01T00:00:00
Latency, cost, and reliability optimization
agent_loop
advanced
Task: agent_loop Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Java", "developer_needs": [ "governance", "reproducibility", "documentation", "tests_are_truth" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e498ae8b098874941974cff60ae1b3fff94bd02e
train_48540
2026-01-01T00:00:00
Latency, cost, and reliability optimization
compare
intermediate
Task: compare Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Java", "developer_needs": [ "documentation", "reproducibility", "repo_scale_reasoning", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e349b3de38c77b62dc52c3890cb5a2e55a3b4232
train_48541
2026-01-01T00:00:00
Extended context and repo-scale understanding
compare
expert
Task: compare Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "tests_are_truth", "reproducibility", "cost_latency_tradeoffs", "governance" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
af5c46e41f846a80ca8ec2fb14cece0a0c9d956a
train_48542
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
compare
expert
Task: compare Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "reproducibility", "documentation", "auditability" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f4643c2174fe239473eebab5362cf2291c6af1d1
train_48543
2026-01-01T00:00:00
Secure code generation and policy gates
code
intermediate
Task: code Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "tooling", "documentation", "repo_scale_reasoning", "governance" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
72bf759fb93ac00db06437933147be5f874353ff
train_48544
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
compare
intermediate
Task: compare Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "documentation", "security_gates", "reproducibility", "tooling" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1a0960e7e240d93684fcb891349bb29fefba49fb
train_48545
2026-01-01T00:00:00
Extended context and repo-scale understanding
design
intermediate
Task: design Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "tests_are_truth", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ccd800a33f5b06ac7078cdd6187b5ba3b4d82f19
train_48546
2026-01-01T00:00:00
Secure code generation and policy gates
design
intermediate
Task: design Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Bash Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "auditability", "documentation", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fbe5e522145856f09d13c667265df40a7c40026c
train_48547
2026-01-01T00:00:00
Self-improving agents and feedback loops
data_pipeline
advanced
Task: data_pipeline Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Bash", "developer_needs": [ "reproducibility", "evaluation_metrics", "security_gates", "ci_integration" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
a4dc146e42fc87d8a6a4c8263673bdf9967422f1
train_48548
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
expert
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "repo_scale_reasoning", "ci_integration", "reproducibility" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
43d8e8c11339bc0a38b05cf4ca7cc05ea105fd60
train_48549
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
code
expert
Task: code Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "governance", "cost_latency_tradeoffs", "repo_scale_reasoning" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
48ba12da3d2855f46ed5477f4c87cded3af6864b
train_48550
2026-01-01T00:00:00
Self-improving agents and feedback loops
data_pipeline
advanced
Task: data_pipeline Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Go", "developer_needs": [ "tooling", "reproducibility", "repo_scale_reasoning", "auditability" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
882f83b546a7264dafd9b26949c5ff6070f072ec
train_48551
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
advanced
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "documentation", "repo_scale_reasoning", "governance", "tests_are_truth" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0fe6b44f28de1008e8b3cda7a7b3595d225f81bd
train_48552
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
expert
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "reproducibility", "governance", "ci_integration" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c477bb993d55082cb8605ae3ae2d4dcb5f2ae692
train_48553
2026-01-01T00:00:00
Secure code generation and policy gates
eval
advanced
Task: eval Topic: Secure code generation and policy gates Difficulty: advanced Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "documentation", "tests_are_truth", "security_gates", "governance" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b39916ea39e6e511f2043ee476059da4ede82d85
train_48554
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
review
advanced
Task: review Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "SQL", "developer_needs": [ "evaluation_metrics", "governance", "documentation", "reproducibility" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f2dc3d8eb12bde8a684ae810b266a994080eb57f
train_48555
2026-01-01T00:00:00
Self-improving agents and feedback loops
design
expert
Task: design Topic: Self-improving agents and feedback loops Difficulty: expert Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "tests_are_truth", "governance" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b812686e8c27e8450f856d4f93788b1f1a5ccf2e
train_48556
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
failure_analysis
intermediate
Task: failure_analysis Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "reproducibility", "evaluation_metrics", "auditability", "security_gates" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0998f0630ab08b6d3a0957d4c22d7ef34e3492d0
train_48557
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
eval
expert
Task: eval Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "security_gates", "reproducibility", "cost_latency_tradeoffs", "tooling" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ccc727e7523625114a2b47edb7cfaa4e8006b64b
train_48558
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
failure_analysis
advanced
Task: failure_analysis Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "evaluation_metrics", "repo_scale_reasoning", "security_gates" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
76f058a0eb8512f6c6a10a5b2392814cbd4a4402
train_48559
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
agent_loop
advanced
Task: agent_loop Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "documentation", "cost_latency_tradeoffs", "governance", "ci_integration" ], "moe_experts": [ "performance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
88f567a1fea656883b89d1e2690ba1b99d618b35
train_48560
2026-01-01T00:00:00
Latency, cost, and reliability optimization
data_pipeline
advanced
Task: data_pipeline Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "documentation", "tooling", "governance" ], "moe_experts": [ "evaluation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6cdd52a9c373cc0374621f52e8329c7e27d607c6
train_48561
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
failure_analysis
intermediate
Task: failure_analysis Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Python", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "tests_are_truth", "evaluation_metrics" ], "moe_experts": [ "performance_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
81de0ed2861a9618363dbb7041ceee69cb7c83cb
train_48562
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
expert
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "tooling", "documentation", "evaluation_metrics", "reproducibility" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
78249f821dcffa92a3d1ff9138a5398a5367f08c
train_48563
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
agent_loop
advanced
Task: agent_loop Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Python", "developer_needs": [ "governance", "tests_are_truth", "auditability", "reproducibility" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f536e21a4198efc3edad42b678f48be4e4cdaace
train_48564
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
compare
expert
Task: compare Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "auditability", "governance", "documentation", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
992f9d13724fc1c7761538c825d81e3dc3afeb38
train_48565
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
failure_analysis
intermediate
Task: failure_analysis Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: intermediate Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "governance", "documentation", "tests_are_truth" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3fb429210a1efb0b98d0b04fde4c655f18425085
train_48566
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
design
expert
Task: design Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "tooling", "governance", "ci_integration", "documentation" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e96beddad5f2ee2870bb09b14812d976de30467a
train_48567
2026-01-01T00:00:00
Extended context and repo-scale understanding
eval
advanced
Task: eval Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "security_gates", "tooling" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
dc52838f40ac6aaf5c4db9ed8b727aab6031d074
train_48568
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
expert
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "ci_integration", "governance", "security_gates", "tests_are_truth" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
eaa1b8ec4e5fa44870560ca5bc76674bea0703f6
train_48569
2026-01-01T00:00:00
Extended context and repo-scale understanding
failure_analysis
expert
Task: failure_analysis Topic: Extended context and repo-scale understanding Difficulty: expert Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "C#", "developer_needs": [ "repo_scale_reasoning", "documentation", "governance", "security_gates" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4b82abec5e7ec40c919e566f4c00df056ac54b91
train_48570
2026-01-01T00:00:00
Extended context and repo-scale understanding
data_pipeline
intermediate
Task: data_pipeline Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Python", "developer_needs": [ "governance", "repo_scale_reasoning", "ci_integration", "documentation" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
702853629ad2459f546e6d14cd212148d1169f54
train_48571
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
advanced
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: advanced Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "evaluation_metrics", "reproducibility" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
341720eefcd0cccf33261849801517458e9f0d13
train_48572
2026-01-01T00:00:00
Secure code generation and policy gates
failure_analysis
advanced
Task: failure_analysis Topic: Secure code generation and policy gates Difficulty: advanced Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "governance", "tests_are_truth", "auditability" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
61a9e45eb876cfe83f4b9ad6b3a4904346fb43cc
train_48573
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
eval
advanced
Task: eval Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "tests_are_truth", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
56cdb46f3db561f744600a366393232912c86c69
train_48574
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
failure_analysis
expert
Task: failure_analysis Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Python", "developer_needs": [ "repo_scale_reasoning", "documentation", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
44f320c89e0301bc14b57a17d81df08fb04231f7
train_48575
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
compare
intermediate
Task: compare Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "auditability", "evaluation_metrics", "ci_integration", "tooling" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8b9324d966f10c01f689a810bfae40711820c527
train_48576
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
code
intermediate
Task: code Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "repo_scale_reasoning", "auditability", "ci_integration" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2c99db5669b1592b572f35ee83591b1d31e1313e
train_48577
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
code
intermediate
Task: code Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "tests_are_truth", "ci_integration", "cost_latency_tradeoffs", "governance" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
735db2e5f6c2c3163491b5bc41dc3b7e0b91e178
train_48578
2026-01-01T00:00:00
Secure code generation and policy gates
code
expert
Task: code Topic: Secure code generation and policy gates Difficulty: expert Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "reproducibility", "auditability" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bbb07585b418e1994663bb161880866bf0e0265f
train_48579
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
review
expert
Task: review Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "auditability", "ci_integration", "evaluation_metrics", "repo_scale_reasoning" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
14b4fe3773be8d0a6f0d989a19a4aed6ff648840
train_48580
2026-01-01T00:00:00
Self-improving agents and feedback loops
review
expert
Task: review Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "tests_are_truth", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
68a694b82aab70114fefe3fd2bbf1cebed6ea09a
train_48581
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
code
advanced
Task: code Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "security_gates", "governance" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4ace36ef8bd6a650cefb315fe4b2318e051f1bbf
train_48582
2026-01-01T00:00:00
Latency, cost, and reliability optimization
agent_loop
expert
Task: agent_loop Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "governance", "tooling", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ee8b6c62166ea06da29f6551e19a61fb3150c3ea
train_48583
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
patch_diff
advanced
Task: patch_diff Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "auditability", "documentation", "tests_are_truth" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3efaab7ae895c58b6a1bdb0a47da1fa5001ed48c
train_48584
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
data_pipeline
intermediate
Task: data_pipeline Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "SQL", "developer_needs": [ "tests_are_truth", "auditability", "governance", "documentation" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4f6fc01269f0bc9bcccc117274799399143b9de2
train_48585
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
explain
advanced
Task: explain Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "security_gates", "evaluation_metrics", "repo_scale_reasoning", "tests_are_truth" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1b6eb74ba605a482125a046f7486788cef4cb2e3
train_48586
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
expert
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "governance", "tests_are_truth", "documentation", "security_gates" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d539cb6b503702c1b40572c1adc0cc435321d46a
train_48587
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
failure_analysis
expert
Task: failure_analysis Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "C#", "developer_needs": [ "evaluation_metrics", "repo_scale_reasoning", "ci_integration", "tooling" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
be10c36d5db9b6ab448e22e136c4e1e186cc71eb
train_48588
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
data_pipeline
expert
Task: data_pipeline Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Rust", "developer_needs": [ "tooling", "evaluation_metrics", "cost_latency_tradeoffs", "auditability" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b2642df3d327f2748eab3576d8185adc5821d541
train_48589
2026-01-01T00:00:00
Self-improving agents and feedback loops
review
expert
Task: review Topic: Self-improving agents and feedback loops Difficulty: expert Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "C#", "developer_needs": [ "tooling", "auditability", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9687604bafe64fa885857b0e8253766b43d76b42
train_48590
2026-01-01T00:00:00
Latency, cost, and reliability optimization
explain
expert
Task: explain Topic: Latency, cost, and reliability optimization Difficulty: expert Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "auditability", "governance", "cost_latency_tradeoffs", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
eab87991636e04572dbe4fddbc6c6e10c409ccb5
train_48591
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
review
expert
Task: review Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "tooling", "repo_scale_reasoning", "evaluation_metrics" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fe1a214f61e5bd01a9e6835866337ca00c8e499c
train_48592
2026-01-01T00:00:00
Extended context and repo-scale understanding
explain
expert
Task: explain Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "auditability", "tooling", "tests_are_truth" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bff8235a920423041ae75eef44bb46967496794e
train_48593
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
review
advanced
Task: review Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "tests_are_truth", "auditability", "documentation" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f7542f51d3ce8145be64b5a8836c12cb4b4d8d2a
train_48594
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
failure_analysis
expert
Task: failure_analysis Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "governance", "auditability", "documentation", "repo_scale_reasoning" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ca7011b050cb9f87521f050b3cbf6134c79eb1a3
train_48595
2026-01-01T00:00:00
Latency, cost, and reliability optimization
compare
advanced
Task: compare Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Bash", "developer_needs": [ "repo_scale_reasoning", "auditability", "ci_integration", "security_gates" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3d71c6f8311872cf37e5f65f105ec798a0ef36b4
train_48596
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
data_pipeline
intermediate
Task: data_pipeline Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "tooling", "auditability" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e0509ed9c7a40ea181c881adf2cc3bb69ffe20cc
train_48597
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
data_pipeline
intermediate
Task: data_pipeline Topic: SWE-bench style real-repo evaluation Difficulty: intermediate Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Go", "developer_needs": [ "security_gates", "repo_scale_reasoning", "tooling", "governance" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9a4a5048ca10e7709d6df5853b33ca894d2130cc
train_48598
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
patch_diff
expert
Task: patch_diff Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Rust", "developer_needs": [ "governance", "repo_scale_reasoning", "tooling", "ci_integration" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
79e1465888fc460128f6f909a03cb68c2b19fcd8
train_48599
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
eval
expert
Task: eval Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "Bash", "developer_needs": [ "security_gates", "cost_latency_tradeoffs", "tooling", "repo_scale_reasoning" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
79a2a8bda7176b57bc53ee1569305f821c66cbdc