id
stringlengths
11
11
created
timestamp[s]date
2026-01-01 00:00:00
2026-01-01 00:00:00
topic
stringclasses
14 values
task_type
stringclasses
10 values
difficulty
stringclasses
3 values
instruction
stringlengths
189
248
input
stringclasses
1 value
output
stringclasses
9 values
reasoning_steps
listlengths
0
5
metadata
dict
hash
stringlengths
40
40
train_05500
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
compare
intermediate
Task: compare Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "security_gates", "tooling", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d866789c9298263fde0734864846bd354cf0f707
train_05501
2026-01-01T00:00:00
Self-improving agents and feedback loops
design
advanced
Task: design Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "tooling", "ci_integration", "documentation" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f921a2dea01cef105423d25497b39436b38eb1d2
train_05502
2026-01-01T00:00:00
Self-improving agents and feedback loops
compare
expert
Task: compare Topic: Self-improving agents and feedback loops Difficulty: expert Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "reproducibility", "ci_integration", "documentation" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
04033ed402e1175df1b643ca81927d22931c6749
train_05503
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
eval
advanced
Task: eval Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "cost_latency_tradeoffs", "tooling" ], "moe_experts": [ "governance_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ff05e91a734e30e2d1d79c2ab3b5c73886cc2bd3
train_05504
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
agent_loop
intermediate
Task: agent_loop Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Rust", "developer_needs": [ "ci_integration", "cost_latency_tradeoffs", "tooling", "evaluation_metrics" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c5217aec653af3a41e3cd0b26e2eddc17bb0d76e
train_05505
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
code
expert
Task: code Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "cost_latency_tradeoffs", "documentation", "ci_integration" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0125a48d7a92afb403a7d162ea2df7df73c29f9c
train_05506
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
data_pipeline
intermediate
Task: data_pipeline Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "tooling", "documentation", "security_gates" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
66d69fed7220905aeb7545ee1b05e6794588c9f8
train_05507
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
expert
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Python", "developer_needs": [ "auditability", "ci_integration", "governance", "tooling" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
23fd7042780392ebbc1584ab50a5ea1d5bb1c545
train_05508
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
agent_loop
expert
Task: agent_loop Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: Python Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Python", "developer_needs": [ "documentation", "tests_are_truth", "security_gates", "reproducibility" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ead3831d6643d2c1fcaa1f84e57da28f7c7e50d8
train_05509
2026-01-01T00:00:00
Secure code generation and policy gates
data_pipeline
intermediate
Task: data_pipeline Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "ci_integration", "security_gates", "reproducibility", "governance" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ad1bc191f2ad801cff55ddc09db44e0e44c40a8d
train_05510
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
data_pipeline
advanced
Task: data_pipeline Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "JavaScript", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "documentation", "reproducibility" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bff923dd4f65887cf72856ba328e9b2df3e3af99
train_05511
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
review
expert
Task: review Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Go", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "auditability", "security_gates" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2c0cb02d2979ef213dd4ad360239e4eb79801b74
train_05512
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
failure_analysis
advanced
Task: failure_analysis Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Go Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Go", "developer_needs": [ "tooling", "tests_are_truth", "evaluation_metrics", "security_gates" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
66ed419da1c55e0ad18cc9a61e68626991619c37
train_05513
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
code
advanced
Task: code Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "repo_scale_reasoning", "reproducibility", "governance" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1d94f42db64babdf1d48e98fba0da10482601895
train_05514
2026-01-01T00:00:00
Self-improving agents and feedback loops
failure_analysis
advanced
Task: failure_analysis Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "auditability", "documentation" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
f4d49c794ee288ce5fc92f1aea59ed6814f5e232
train_05515
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
compare
expert
Task: compare Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "auditability", "tooling", "repo_scale_reasoning" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
482d9cc967a5428bcf39dad8c71a8ae955682328
train_05516
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
code
expert
Task: code Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "documentation", "repo_scale_reasoning", "tests_are_truth", "security_gates" ], "moe_experts": [ "governance_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9fa89533996246f7e6aad57117025622065e111b
train_05517
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
eval
intermediate
Task: eval Topic: Governance, provenance, and licensing for code data Difficulty: intermediate Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "SQL", "developer_needs": [ "auditability", "governance", "evaluation_metrics", "documentation" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7a203f7ff8176ffd4bfbaa3a0a1dc19cbc019b92
train_05518
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
compare
expert
Task: compare Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "auditability", "cost_latency_tradeoffs", "reproducibility" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8f09b499fa2456b41b7696a21d520caba0d1e363
train_05519
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
agent_loop
expert
Task: agent_loop Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "evaluation_metrics", "security_gates", "documentation" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
89e3a31e89aac099e8d1a77b338028415e31771f
train_05520
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
failure_analysis
expert
Task: failure_analysis Topic: Reasoning-first coding models and tunable deliberation Difficulty: expert Target language: C# Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "C#", "developer_needs": [ "security_gates", "cost_latency_tradeoffs", "tooling", "auditability" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b3e78693f1280e25526350aaa742ba386e258583
train_05521
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
explain
advanced
Task: explain Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "documentation", "evaluation_metrics", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
443ec1c4e0fac27110083e4162747d7c4e51aa97
train_05522
2026-01-01T00:00:00
Extended context and repo-scale understanding
design
advanced
Task: design Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Java Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "tooling", "ci_integration", "evaluation_metrics", "tests_are_truth" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
431bc81728b4f5f96f8b7fd1ac4a855cbf79d3c2
train_05523
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
design
expert
Task: design Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "auditability", "documentation", "evaluation_metrics", "tooling" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
fd1b1127d241e46b6274f42769b23797edcbed3d
train_05524
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
patch_diff
expert
Task: patch_diff Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: JavaScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "governance", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
52847a43b9689b2ea74e3df7e88b43aa74595711
train_05525
2026-01-01T00:00:00
Secure code generation and policy gates
compare
advanced
Task: compare Topic: Secure code generation and policy gates Difficulty: advanced Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "repo_scale_reasoning", "reproducibility", "ci_integration" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5afa86e27d0699ec1927dd6dc048eb8de77c557b
train_05526
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
agent_loop
advanced
Task: agent_loop Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Rust Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Rust", "developer_needs": [ "tooling", "tests_are_truth", "security_gates", "reproducibility" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
207dca41468ce9ad1d2da025484524decf648aa0
train_05527
2026-01-01T00:00:00
Self-improving agents and feedback loops
design
intermediate
Task: design Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: C# Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "documentation", "repo_scale_reasoning", "reproducibility", "cost_latency_tradeoffs" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
88f0d5faa706d0daa36419c871db959d5674cb65
train_05528
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
design
expert
Task: design Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "tooling", "auditability", "documentation" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d056ea3e21c528c405fc3161203d20642c38705a
train_05529
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
agent_loop
intermediate
Task: agent_loop Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "auditability", "repo_scale_reasoning", "reproducibility", "governance" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
abb3da8d765df5f6b947c70baef2d7bdae47f205
train_05530
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
data_pipeline
expert
Task: data_pipeline Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "ci_integration", "reproducibility", "security_gates" ], "moe_experts": [ "agentic_systems_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0ac559a00a0df6522d96471c8d2f84068cb2c166
train_05531
2026-01-01T00:00:00
Self-improving agents and feedback loops
review
expert
Task: review Topic: Self-improving agents and feedback loops Difficulty: expert Target language: JavaScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "JavaScript", "developer_needs": [ "reproducibility", "tests_are_truth", "ci_integration", "repo_scale_reasoning" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b76a148e23237b63d2e9d6088429c9a20b7068c8
train_05532
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
review
advanced
Task: review Topic: Mixture-of-Experts (MoE) for code Difficulty: advanced Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Go", "developer_needs": [ "tooling", "repo_scale_reasoning", "governance", "auditability" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
617d91b037191add1855ce9f42b1a746f1cdb2e1
train_05533
2026-01-01T00:00:00
Secure code generation and policy gates
agent_loop
advanced
Task: agent_loop Topic: Secure code generation and policy gates Difficulty: advanced Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Rust", "developer_needs": [ "security_gates", "tooling", "reproducibility", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5b9b4e61e80f10413c88d26592b9fbfe50dc9092
train_05534
2026-01-01T00:00:00
Latency, cost, and reliability optimization
design
advanced
Task: design Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "tooling", "security_gates" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
cc13d560a57145418916f5014c90631f2caee234
train_05535
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
agent_loop
expert
Task: agent_loop Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: JavaScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "JavaScript", "developer_needs": [ "auditability", "tests_are_truth", "tooling", "repo_scale_reasoning" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
de7990b9141bae75582d13fe01d826c674b79114
train_05536
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
code
intermediate
Task: code Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Rust", "developer_needs": [ "evaluation_metrics", "ci_integration", "tests_are_truth", "security_gates" ], "moe_experts": [ "coding_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
42bd8db05e17f9e1af4aa2d8a538ea9b8e9f03f3
train_05537
2026-01-01T00:00:00
Extended context and repo-scale understanding
code
advanced
Task: code Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "documentation", "security_gates", "governance" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
9338258b568e59252aa092a02220ec72c5642476
train_05538
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
design
advanced
Task: design Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: SQL Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "ci_integration", "cost_latency_tradeoffs", "security_gates", "reproducibility" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
170fc47b024bddacbf4b9a92807ef35f179ea613
train_05539
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
failure_analysis
advanced
Task: failure_analysis Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "SQL", "developer_needs": [ "auditability", "reproducibility", "tooling", "documentation" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b5c04876c3a0da32658605e0f0244a311d736d06
train_05540
2026-01-01T00:00:00
Latency, cost, and reliability optimization
explain
intermediate
Task: explain Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "governance", "documentation", "reproducibility" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bd93d1aad9990a6583ad9c6fa2e3957d024b9d16
train_05541
2026-01-01T00:00:00
Secure code generation and policy gates
review
intermediate
Task: review Topic: Secure code generation and policy gates Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Review: correctness, security, performance, governance
[]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "governance", "security_gates", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
92a77c14d72843a238787ba51c64eb059684f951
train_05542
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
eval
expert
Task: eval Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: C# Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "C#", "developer_needs": [ "governance", "repo_scale_reasoning", "ci_integration", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1832377fc41cceb39f7e9f4a856914d9321b6914
train_05543
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
design
advanced
Task: design Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "evaluation_metrics", "security_gates", "auditability", "reproducibility" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c48f8250326cb8ddf4af95491be28a0bbcad33a8
train_05544
2026-01-01T00:00:00
Secure code generation and policy gates
failure_analysis
advanced
Task: failure_analysis Topic: Secure code generation and policy gates Difficulty: advanced Target language: Bash Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Bash", "developer_needs": [ "ci_integration", "documentation", "cost_latency_tradeoffs", "tooling" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1ced8645d458f12c1cbdd27f87896fc9ff1da887
train_05545
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
data_pipeline
advanced
Task: data_pipeline Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "repo_scale_reasoning", "documentation", "governance" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3ffd5a1686bfa26401ec05ea3aa21b56f96bde27
train_05546
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
patch_diff
intermediate
Task: patch_diff Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "TypeScript", "developer_needs": [ "governance", "security_gates", "evaluation_metrics", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bb2ff79bf0d5c2b1a0d2db702d8fde183fdae6ed
train_05547
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
patch_diff
advanced
Task: patch_diff Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: C# Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "C#", "developer_needs": [ "ci_integration", "evaluation_metrics", "security_gates", "reproducibility" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2c66af4213edacb054705ec6bdb118cb0b66c2d0
train_05548
2026-01-01T00:00:00
Self-improving agents and feedback loops
patch_diff
expert
Task: patch_diff Topic: Self-improving agents and feedback loops Difficulty: expert Target language: Bash Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "tests_are_truth", "reproducibility", "repo_scale_reasoning", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
43907aeabd79a6856396c895e701606b70d61638
train_05549
2026-01-01T00:00:00
Extended context and repo-scale understanding
failure_analysis
intermediate
Task: failure_analysis Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "tooling", "documentation", "repo_scale_reasoning", "evaluation_metrics" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8277ad08cc8b51c787ece9d5b8cd375c1d953a1a
train_05550
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
code
intermediate
Task: code Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "repo_scale_reasoning", "ci_integration", "governance" ], "moe_experts": [ "agentic_systems_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2a265d862bb6f00b5e8e0d5208c6087785b0e12f
train_05551
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
patch_diff
advanced
Task: patch_diff Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: advanced Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "JavaScript", "developer_needs": [ "ci_integration", "security_gates", "documentation", "auditability" ], "moe_experts": [ "performance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ecf845c0360a6107329476d53405fd9c16c16f67
train_05552
2026-01-01T00:00:00
Latency, cost, and reliability optimization
explain
advanced
Task: explain Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: C# Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "C#", "developer_needs": [ "cost_latency_tradeoffs", "evaluation_metrics", "tests_are_truth", "auditability" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e6a70545ced29ad791d68bb3f3edd229a94489af
train_05553
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
design
advanced
Task: design Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: Go Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Go", "developer_needs": [ "documentation", "tooling", "governance", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c48f8250326cb8ddf4af95491be28a0bbcad33a8
train_05554
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
explain
intermediate
Task: explain Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "security_gates", "governance" ], "moe_experts": [ "agentic_systems_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4b9efda42661b6fda9df58abddef68e7577686b2
train_05555
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
data_pipeline
intermediate
Task: data_pipeline Topic: Code-specialized model families and sizing tradeoffs Difficulty: intermediate Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "evaluation_metrics", "reproducibility" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
de1c24b23069603c71692acc61572bc3c78de901
train_05556
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
compare
advanced
Task: compare Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "reproducibility", "auditability", "governance" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
13159a0bfdac9b0e0dd89b1d8f16bbc26649c7d1
train_05557
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
patch_diff
expert
Task: patch_diff Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "governance", "tests_are_truth", "auditability" ], "moe_experts": [ "data_curation_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7508eae05c649e6ef8f0c3b9a6154996edfb40ad
train_05558
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
patch_diff
expert
Task: patch_diff Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "reproducibility", "governance", "documentation" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d516bfa2c1db9fb66cdc193dc9ccbf34d3c25825
train_05559
2026-01-01T00:00:00
Extended context and repo-scale understanding
patch_diff
intermediate
Task: patch_diff Topic: Extended context and repo-scale understanding Difficulty: intermediate Target language: Bash Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Bash", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "documentation", "tests_are_truth" ], "moe_experts": [ "security_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
5dddf17491d12b3c9c264ca45c0e560233755d94
train_05560
2026-01-01T00:00:00
Latency, cost, and reliability optimization
data_pipeline
advanced
Task: data_pipeline Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "JavaScript", "developer_needs": [ "tests_are_truth", "evaluation_metrics", "reproducibility", "governance" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3b8f1cffeaf583e7a1225e0c591e3979eb432146
train_05561
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
data_pipeline
intermediate
Task: data_pipeline Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: Rust Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Rust", "developer_needs": [ "cost_latency_tradeoffs", "documentation", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
afac449107699a759b9b3277b9627e7843d3c28a
train_05562
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
data_pipeline
expert
Task: data_pipeline Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: expert Target language: SQL Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "evaluation_metrics", "tests_are_truth", "auditability", "documentation" ], "moe_experts": [ "performance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
6197b5dd8d1c7d40c94c1ea15d3a24fc125d987e
train_05563
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
eval
advanced
Task: eval Topic: Model merging, distillation, and continued pretraining Difficulty: advanced Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "documentation", "tooling", "ci_integration", "reproducibility" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4797eba72ffdd1dc33939fdcb3172827708814db
train_05564
2026-01-01T00:00:00
Reasoning-first coding models and tunable deliberation
design
advanced
Task: design Topic: Reasoning-first coding models and tunable deliberation Difficulty: advanced Target language: Python Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "Python", "developer_needs": [ "reproducibility", "governance", "documentation", "security_gates" ], "moe_experts": [ "security_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
4ba04e21cdfc2105b21dc5411de05e458c2a863e
train_05565
2026-01-01T00:00:00
Agentic coding systems (plan→edit→test→reflect)
data_pipeline
advanced
Task: data_pipeline Topic: Agentic coding systems (plan→edit→test→reflect) Difficulty: advanced Target language: Python Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "tooling", "governance", "repo_scale_reasoning", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
eb48a5a771e86f4e725b495f468fae4cfbfa1e7d
train_05566
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
design
intermediate
Task: design Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "SQL", "developer_needs": [ "auditability", "ci_integration", "tests_are_truth", "governance" ], "moe_experts": [ "evaluation_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ad07fcdc4d24df4747c917f443b6938aa87467fd
train_05567
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
eval
advanced
Task: eval Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: SQL Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Eval: pass@k, time-to-green, regressions, diff size
[]
{ "target_language": "SQL", "developer_needs": [ "evaluation_metrics", "governance", "documentation", "security_gates" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
afd88ed6cec59649821f895b05ecfbd1da6da449
train_05568
2026-01-01T00:00:00
Self-improving agents and feedback loops
explain
advanced
Task: explain Topic: Self-improving agents and feedback loops Difficulty: advanced Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "cost_latency_tradeoffs", "ci_integration", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
39f29b3d1fe9697d4e78dbeaefbf457878b4c023
train_05569
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
patch_diff
expert
Task: patch_diff Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Python Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Python", "developer_needs": [ "governance", "security_gates", "auditability", "cost_latency_tradeoffs" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
843ea2b61043a0d10b6cfe8ba2048a787fe3b0fe
train_05570
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
patch_diff
intermediate
Task: patch_diff Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Go Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Go", "developer_needs": [ "tests_are_truth", "cost_latency_tradeoffs", "evaluation_metrics", "documentation" ], "moe_experts": [ "data_curation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c1e3bd1417cdec4eec36173063b6f1cd0161f159
train_05571
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
compare
advanced
Task: compare Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "SQL", "developer_needs": [ "repo_scale_reasoning", "tests_are_truth", "evaluation_metrics", "security_gates" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2971397baac89d3d00cbc258453f08cee33f7afd
train_05572
2026-01-01T00:00:00
Secure code generation and policy gates
patch_diff
intermediate
Task: patch_diff Topic: Secure code generation and policy gates Difficulty: intermediate Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "SQL", "developer_needs": [ "tooling", "security_gates", "repo_scale_reasoning", "reproducibility" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bdf83212b2ada54c7d73fbffdd81f6ca6df95d40
train_05573
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
design
expert
Task: design Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: expert Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "JavaScript", "developer_needs": [ "repo_scale_reasoning", "cost_latency_tradeoffs", "documentation", "governance" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8866f9a621e472ce624a7f0400f7b577a190da91
train_05574
2026-01-01T00:00:00
Multimodal dev workflows (docs, diagrams, traces)
patch_diff
advanced
Task: patch_diff Topic: Multimodal dev workflows (docs, diagrams, traces) Difficulty: advanced Target language: TypeScript Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "documentation", "governance", "auditability", "ci_integration" ], "moe_experts": [ "evaluation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
c82ed0b0b6d355ce7c9f5ef42c1dfa5db096531b
train_05575
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
failure_analysis
intermediate
Task: failure_analysis Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Go", "developer_needs": [ "reproducibility", "governance", "cost_latency_tradeoffs", "documentation" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
0b9b60cfc59e849080ccfd54e4ae48e07a72d889
train_05576
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
patch_diff
expert
Task: patch_diff Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "security_gates", "documentation", "tooling", "cost_latency_tradeoffs" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3389e8268935757a265f3beb7caf80e18c0085a2
train_05577
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
data_pipeline
expert
Task: data_pipeline Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "repo_scale_reasoning", "security_gates", "governance", "cost_latency_tradeoffs" ], "moe_experts": [ "data_curation_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
102737d0d26a3a6ff789059a31299546a73f4cf0
train_05578
2026-01-01T00:00:00
Self-improving agents and feedback loops
design
intermediate
Task: design Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "tooling", "reproducibility", "governance" ], "moe_experts": [ "governance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
b27058a1ed1d7e90645fb52358583b64c1c7e8b3
train_05579
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
code
expert
Task: code Topic: Tool calling, sandboxes, and CI integration Difficulty: expert Target language: Python Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Scaffold: ```python def agent_loop(plan, edit, test, issue, max_iters=4): history = [] p = plan(issue) for _ in range(max_iters): patch = edit(issue, p) ok, report = test(patch) history.append({"plan": p, "ok": ok}) if ok: return patch, history p = p + " | refine" return patch, history ```
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Python", "developer_needs": [ "repo_scale_reasoning", "tooling", "auditability", "governance" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8346334251620af16454d8a44835ed31d2d31b52
train_05580
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
data_pipeline
expert
Task: data_pipeline Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: expert Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "reproducibility", "evaluation_metrics" ], "moe_experts": [ "security_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
febcea60a10345a7668d4f2f4b7181b77d9f167e
train_05581
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
compare
intermediate
Task: compare Topic: Mixture-of-Experts (MoE) for code Difficulty: intermediate Target language: Java Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "reproducibility", "repo_scale_reasoning", "tooling", "documentation" ], "moe_experts": [ "coding_expert", "governance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
58d274f1057d70a306b16d7b635078281a0f2bba
train_05582
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
agent_loop
advanced
Task: agent_loop Topic: SWE-bench style real-repo evaluation Difficulty: advanced Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "cost_latency_tradeoffs", "ci_integration", "documentation", "tooling" ], "moe_experts": [ "security_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d420a7b05128d81da5dfa248ac6dcfae0bf7a308
train_05583
2026-01-01T00:00:00
Secure code generation and policy gates
patch_diff
intermediate
Task: patch_diff Topic: Secure code generation and policy gates Difficulty: intermediate Target language: TypeScript Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "TypeScript", "developer_needs": [ "tests_are_truth", "security_gates", "repo_scale_reasoning", "governance" ], "moe_experts": [ "evaluation_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1d83571eeaf64981ac38c62742db228e2e4cad4f
train_05584
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
failure_analysis
intermediate
Task: failure_analysis Topic: Model merging, distillation, and continued pretraining Difficulty: intermediate Target language: JavaScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "JavaScript", "developer_needs": [ "tooling", "evaluation_metrics", "security_gates", "auditability" ], "moe_experts": [ "data_curation_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
66d3972c2210bd8e67b66276bd12d2f7b78607f6
train_05585
2026-01-01T00:00:00
Extended context and repo-scale understanding
agent_loop
expert
Task: agent_loop Topic: Extended context and repo-scale understanding Difficulty: expert Target language: Go Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Loop: Plan → Edit → Test → Reflect → Human gate
[]
{ "target_language": "Go", "developer_needs": [ "ci_integration", "repo_scale_reasoning", "reproducibility", "tests_are_truth" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
7c455f28ea13c5abdb49ad9c79e53cffcc00dcd5
train_05586
2026-01-01T00:00:00
Latency, cost, and reliability optimization
patch_diff
intermediate
Task: patch_diff Topic: Latency, cost, and reliability optimization Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "TypeScript", "developer_needs": [ "ci_integration", "reproducibility", "cost_latency_tradeoffs", "governance" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8349827930755ee3a70e1320fc715805b329c60e
train_05587
2026-01-01T00:00:00
Latency, cost, and reliability optimization
data_pipeline
advanced
Task: data_pipeline Topic: Latency, cost, and reliability optimization Difficulty: advanced Target language: Rust Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Rust", "developer_needs": [ "reproducibility", "governance", "cost_latency_tradeoffs", "tests_are_truth" ], "moe_experts": [ "agentic_systems_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
8ba5631023ae1afbc26aefdafc2719c394befadd
train_05588
2026-01-01T00:00:00
SWE-bench style real-repo evaluation
explain
expert
Task: explain Topic: SWE-bench style real-repo evaluation Difficulty: expert Target language: Java Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "governance", "auditability", "repo_scale_reasoning", "tests_are_truth" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
ff167e2dd89774f30df63247c7a06cd505951765
train_05589
2026-01-01T00:00:00
Model merging, distillation, and continued pretraining
data_pipeline
expert
Task: data_pipeline Topic: Model merging, distillation, and continued pretraining Difficulty: expert Target language: Bash Context: Large monorepo with flaky tests and strict CI. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Pipeline: Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
[]
{ "target_language": "Bash", "developer_needs": [ "documentation", "tooling", "security_gates", "repo_scale_reasoning" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
17629894c60819948693a10fc1f3c8f14f99ac9a
train_05590
2026-01-01T00:00:00
Self-improving agents and feedback loops
compare
intermediate
Task: compare Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: TypeScript Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "TypeScript", "developer_needs": [ "tooling", "cost_latency_tradeoffs", "ci_integration", "auditability" ], "moe_experts": [ "coding_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
37ccc1cf4debd1761b8f8d298373982a0b3bea69
train_05591
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
code
intermediate
Task: code Topic: Tool calling, sandboxes, and CI integration Difficulty: intermediate Target language: Java Context: Research team validating claims against real repos. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Java", "developer_needs": [ "evaluation_metrics", "reproducibility", "tests_are_truth", "cost_latency_tradeoffs" ], "moe_experts": [ "coding_expert", "evaluation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
d39d2fde3133e3acb5f467fcbe69464817485100
train_05592
2026-01-01T00:00:00
Code-specialized model families and sizing tradeoffs
compare
expert
Task: compare Topic: Code-specialized model families and sizing tradeoffs Difficulty: expert Target language: SQL Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Compare: capability, cost, latency, reliability
[]
{ "target_language": "SQL", "developer_needs": [ "cost_latency_tradeoffs", "reproducibility", "security_gates", "tooling" ], "moe_experts": [ "governance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
3c982d3fc7f1f618ca19c7b0d2e726e58ffa5d59
train_05593
2026-01-01T00:00:00
Dataset curation pipelines (filter, dedupe, quality)
design
intermediate
Task: design Topic: Dataset curation pipelines (filter, dedupe, quality) Difficulty: intermediate Target language: TypeScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Design with risks, metrics, acceptance criteria
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "TypeScript", "developer_needs": [ "repo_scale_reasoning", "governance", "auditability", "tooling" ], "moe_experts": [ "performance_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
bbb19da14ceca463fa83395f7d3a5679baa5e8d2
train_05594
2026-01-01T00:00:00
Tool calling, sandboxes, and CI integration
patch_diff
advanced
Task: patch_diff Topic: Tool calling, sandboxes, and CI integration Difficulty: advanced Target language: Rust Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "Rust", "developer_needs": [ "repo_scale_reasoning", "governance", "auditability", "evaluation_metrics" ], "moe_experts": [ "coding_expert", "data_curation_expert" ], "governance": { "audit_required": true, "tests_required": true } }
2d0e6dcae8e92872ff86bcf87ee5c011cbf3a372
train_05595
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
failure_analysis
expert
Task: failure_analysis Topic: Governance, provenance, and licensing for code data Difficulty: expert Target language: Rust Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "Rust", "developer_needs": [ "tests_are_truth", "auditability", "evaluation_metrics", "ci_integration" ], "moe_experts": [ "security_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
23a1a42b97b53afad135f5e65529298b0bc9c9fd
train_05596
2026-01-01T00:00:00
Self-improving agents and feedback loops
patch_diff
intermediate
Task: patch_diff Topic: Self-improving agents and feedback loops Difficulty: intermediate Target language: TypeScript Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "TypeScript", "developer_needs": [ "evaluation_metrics", "documentation", "security_gates", "cost_latency_tradeoffs" ], "moe_experts": [ "governance_expert", "coding_expert" ], "governance": { "audit_required": true, "tests_required": true } }
89949ad9187b7b0b63d898af5d26c404adce0f22
train_05597
2026-01-01T00:00:00
Extended context and repo-scale understanding
patch_diff
advanced
Task: patch_diff Topic: Extended context and repo-scale understanding Difficulty: advanced Target language: Java Context: High-traffic service with latency SLOs. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[]
{ "target_language": "Java", "developer_needs": [ "cost_latency_tradeoffs", "security_gates", "governance", "ci_integration" ], "moe_experts": [ "governance_expert", "security_expert" ], "governance": { "audit_required": true, "tests_required": true } }
dfc13c69d7e58154df725384a7b1d4f3c22b415d
train_05598
2026-01-01T00:00:00
Governance, provenance, and licensing for code data
failure_analysis
advanced
Task: failure_analysis Topic: Governance, provenance, and licensing for code data Difficulty: advanced Target language: JavaScript Context: Regulated environment requiring audit trails. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Failure: - Initial patch broke edge case Reflection: - Missing zero-input guard Correction: - Add explicit validation + test
[]
{ "target_language": "JavaScript", "developer_needs": [ "documentation", "tooling", "ci_integration", "reproducibility" ], "moe_experts": [ "evaluation_expert", "performance_expert" ], "governance": { "audit_required": true, "tests_required": true } }
1b20d3ff7b7f9e4b029fce0de1b3ff7d3d9aea10
train_05599
2026-01-01T00:00:00
Mixture-of-Experts (MoE) for code
patch_diff
expert
Task: patch_diff Topic: Mixture-of-Experts (MoE) for code Difficulty: expert Target language: SQL Context: Offline/local deployment with limited compute. Produce expert-level, production-ready artifacts.
Facts: - Modern AI coding prioritizes correctness, evaluation, and governance. - Agentic loops with test gates outperform single-pass generation. Patch (diff-style): ```diff - if x == 0: - return 1/x + if x == 0: + raise ValueError('division by zero') ``` Acceptance: - Tests pass - No new regressions
[ "Identify failing behavior via tests", "Minimize change surface", "Apply patch", "Run targeted + full suite", "Verify no regressions" ]
{ "target_language": "SQL", "developer_needs": [ "evaluation_metrics", "documentation", "security_gates", "ci_integration" ], "moe_experts": [ "performance_expert", "agentic_systems_expert" ], "governance": { "audit_required": true, "tests_required": true } }
e709e9e4a3830e7da345448da96b4d64dc539a6b