id
stringlengths 11
11
| created
timestamp[s]date 2026-01-01 00:00:00
2026-01-01 00:00:00
| topic
stringclasses 14
values | task_type
stringclasses 10
values | difficulty
stringclasses 3
values | instruction
stringlengths 189
248
| input
stringclasses 1
value | output
stringclasses 9
values | reasoning_steps
listlengths 0
5
| metadata
dict | hash
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|
train_00800
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"documentation",
"repo_scale_reasoning",
"governance",
"tooling"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
0eea031e797fda6e3b09ec21fb99a54a57b3ef4c
|
|
train_00801
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
eval
|
advanced
|
Task: eval
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"documentation",
"tooling",
"auditability",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b31ca137de3f070013a786fd059bdd8a9fea450c
|
|
train_00802
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
eval
|
intermediate
|
Task: eval
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"tests_are_truth",
"tooling",
"security_gates",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
03ebc0b3319b2ec6affcb203b245e00482b6d1f0
|
|
train_00803
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"governance",
"repo_scale_reasoning",
"tooling",
"documentation"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6af1ab25b117bfcd75ca1997b0390ecbd62b46a5
|
|
train_00804
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
design
|
advanced
|
Task: design
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"ci_integration",
"documentation",
"governance",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
19dc817ce69bb058b5d473a7e162d04d1eba1c0c
|
|
train_00805
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
code
|
advanced
|
Task: code
Topic: Tool calling, sandboxes, and CI integration
Difficulty: advanced
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"tests_are_truth",
"documentation",
"governance",
"tooling"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
52e37b6ee064d3d9c0334f7ea6ed04719b073fb9
|
|
train_00806
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
design
|
intermediate
|
Task: design
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"tests_are_truth",
"ci_integration",
"cost_latency_tradeoffs",
"security_gates"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
67e2c1b9d9b9874db44afb942531e91f7d7b0f52
|
|
train_00807
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: Rust
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"security_gates",
"evaluation_metrics",
"governance",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
816a98b6ae4461e0afc1a5933aa6bdd3cfd2f484
|
|
train_00808
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"ci_integration",
"tooling",
"security_gates",
"auditability"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
96628122349554184ddbf34934e53ecb61f791c0
|
|
train_00809
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Tool calling, sandboxes, and CI integration
Difficulty: expert
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"auditability",
"evaluation_metrics",
"tests_are_truth"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
33f8d65f2fc040511e67133f2f60093187cb357d
|
|
train_00810
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
eval
|
intermediate
|
Task: eval
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"governance",
"evaluation_metrics",
"ci_integration",
"reproducibility"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8d740f511fbad84dadf48b485c5b441bab5cc456
|
|
train_00811
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
compare
|
expert
|
Task: compare
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"evaluation_metrics",
"documentation",
"tooling"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bd151c78b7da84bf2ff1cb3ec9e81b4a29857b1b
|
|
train_00812
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
eval
|
expert
|
Task: eval
Topic: Governance, provenance, and licensing for code data
Difficulty: expert
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Python",
"developer_needs": [
"repo_scale_reasoning",
"ci_integration",
"tests_are_truth",
"security_gates"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
124f26ee2af8450dac7eaed5ba194fa7ca876790
|
|
train_00813
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Java",
"developer_needs": [
"reproducibility",
"security_gates",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
57abcb1194ef9fc8014bc9b8c30a203b466de7fd
|
|
train_00814
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
eval
|
intermediate
|
Task: eval
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"repo_scale_reasoning",
"evaluation_metrics",
"ci_integration",
"security_gates"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6e75c766bf558f0480d839d3e0bf66da585a5025
|
|
train_00815
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: C#
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"auditability",
"governance"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4121a1658cb75d5ed546151ff095703120447b01
|
|
train_00816
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"evaluation_metrics",
"ci_integration",
"governance",
"auditability"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7b17722a529ef199737bc0cadac3282fbe9e0994
|
|
train_00817
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
review
|
expert
|
Task: review
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"reproducibility",
"cost_latency_tradeoffs",
"documentation",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bb3a4564a7be6f0a89870c7ec35d8df94d63a2d7
|
|
train_00818
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"evaluation_metrics",
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"ci_integration"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
19f6f6da5c9b693657464ca7c00a781e67c576bb
|
|
train_00819
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
failure_analysis
|
advanced
|
Task: failure_analysis
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"security_gates",
"tests_are_truth",
"reproducibility",
"evaluation_metrics"
],
"moe_experts": [
"performance_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
4453c576fc532ca36e2c4d4b82de7d867470e2c3
|
|
train_00820
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
explain
|
expert
|
Task: explain
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"governance",
"repo_scale_reasoning",
"auditability",
"security_gates"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
613b0d4551b95bbf40b0d5212b2c2f1703465936
|
|
train_00821
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
code
|
intermediate
|
Task: code
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"ci_integration",
"documentation",
"evaluation_metrics",
"tooling"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
857a2c1aa7f2c117094768bc64b12dbb25fdd189
|
|
train_00822
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
design
|
intermediate
|
Task: design
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Python
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"cost_latency_tradeoffs",
"tooling",
"reproducibility"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
28f2c178363fb7b9a5d8e991a9c6891915899556
|
|
train_00823
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
eval
|
expert
|
Task: eval
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Java",
"developer_needs": [
"cost_latency_tradeoffs",
"auditability",
"tests_are_truth",
"security_gates"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2cff44271831279ee85f3087dea859f02936410f
|
|
train_00824
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: C#
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "C#",
"developer_needs": [
"documentation",
"evaluation_metrics",
"repo_scale_reasoning",
"tooling"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
77dd33830800edf6138b0fee69b5592c3d03701a
|
|
train_00825
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"cost_latency_tradeoffs",
"tooling",
"evaluation_metrics"
],
"moe_experts": [
"performance_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1d2b8f0b43b7ce62ca4874c331492866b8637ed2
|
|
train_00826
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
code
|
advanced
|
Task: code
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"governance",
"security_gates",
"tooling",
"cost_latency_tradeoffs"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
452a0561b856ff4c2b4f207fc8c8bd451f4092ed
|
|
train_00827
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"documentation",
"reproducibility",
"evaluation_metrics",
"tests_are_truth"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
43604c89a72bf09fd3e6e4a345cb09fd90bf97c3
|
|
train_00828
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
compare
|
intermediate
|
Task: compare
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: C#
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "C#",
"developer_needs": [
"evaluation_metrics",
"cost_latency_tradeoffs",
"tooling",
"ci_integration"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
efb37e37f34f68c277b6c42e4d0e2ab9a65ff216
|
|
train_00829
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
explain
|
expert
|
Task: explain
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"tests_are_truth",
"governance",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bf2a236fe311e0471683d3572f1a01da554c1db7
|
|
train_00830
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
review
|
advanced
|
Task: review
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"evaluation_metrics",
"tests_are_truth",
"cost_latency_tradeoffs",
"auditability"
],
"moe_experts": [
"evaluation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bd154d134497d06603b272ed4d42cdcad26300af
|
|
train_00831
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
review
|
intermediate
|
Task: review
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: JavaScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"governance",
"evaluation_metrics",
"security_gates",
"repo_scale_reasoning"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
67779841d1881753f16ed530d7f45ea92e0d3493
|
|
train_00832
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
explain
|
advanced
|
Task: explain
Topic: Secure code generation and policy gates
Difficulty: advanced
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"security_gates",
"governance",
"repo_scale_reasoning",
"cost_latency_tradeoffs"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e1455f6c75fd10748ecd4433dc84e9aaf92550df
|
|
train_00833
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
code
|
advanced
|
Task: code
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Scaffold:
```python
def agent_loop(plan, edit, test, issue, max_iters=4):
history = []
p = plan(issue)
for _ in range(max_iters):
patch = edit(issue, p)
ok, report = test(patch)
history.append({"plan": p, "ok": ok})
if ok:
return patch, history
p = p + " | refine"
return patch, history
```
|
[] |
{
"target_language": "Python",
"developer_needs": [
"security_gates",
"auditability",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
427fe246bffb6bccab1f455b460a8a58fe8e8e65
|
|
train_00834
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
eval
|
intermediate
|
Task: eval
Topic: Model merging, distillation, and continued pretraining
Difficulty: intermediate
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"tests_are_truth",
"tooling",
"documentation",
"evaluation_metrics"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
df8c22acfd3ff5b991156c3360857f1e191d2314
|
|
train_00835
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Go
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Go",
"developer_needs": [
"reproducibility",
"tests_are_truth",
"governance",
"security_gates"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
dc5f1781b5c83e776c981862ac91bb5deb0f3a5e
|
|
train_00836
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
design
|
intermediate
|
Task: design
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"ci_integration",
"cost_latency_tradeoffs",
"auditability",
"documentation"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
55508163eb1d094c2a9b76fb3a4fc99648beba3c
|
|
train_00837
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
compare
|
expert
|
Task: compare
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: Java
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"tooling",
"documentation",
"tests_are_truth",
"repo_scale_reasoning"
],
"moe_experts": [
"performance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e07cf78e2d46ff82bbdbcdb2fdb8b960216ca23f
|
|
train_00838
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
compare
|
advanced
|
Task: compare
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Go",
"developer_needs": [
"evaluation_metrics",
"cost_latency_tradeoffs",
"governance",
"reproducibility"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f4da811513241049583322cc9cfe4e8016cc75b5
|
|
train_00839
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Governance, provenance, and licensing for code data
Difficulty: intermediate
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Python",
"developer_needs": [
"evaluation_metrics",
"ci_integration",
"governance",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
bfed743a90838fea95180dd8209ddbb13be83fcf
|
|
train_00840
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"governance",
"reproducibility",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
869a88f52355cbaa55fe8a1547efc893850e0dc3
|
|
train_00841
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
design
|
expert
|
Task: design
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"auditability",
"ci_integration",
"evaluation_metrics",
"repo_scale_reasoning"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b853b4176fb835af9318085918893caff9b84d2e
|
|
train_00842
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
code
|
expert
|
Task: code
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Rust",
"developer_needs": [
"repo_scale_reasoning",
"reproducibility",
"governance",
"tooling"
],
"moe_experts": [
"security_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cbc14cd93f18b2e2034f15c7a301baf4f2864808
|
|
train_00843
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
explain
|
advanced
|
Task: explain
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "C#",
"developer_needs": [
"reproducibility",
"ci_integration",
"governance",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
49b79558ba129ffad41ab296631c776eddafbb2c
|
|
train_00844
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"governance",
"reproducibility",
"auditability",
"tooling"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
7e4ed8e285994a032f39f3f3c303d75643aa9f31
|
|
train_00845
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
eval
|
advanced
|
Task: eval
Topic: Latency, cost, and reliability optimization
Difficulty: advanced
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"repo_scale_reasoning",
"security_gates",
"documentation",
"reproducibility"
],
"moe_experts": [
"data_curation_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1d8def0861a9907f767265c1076085995b79aeeb
|
|
train_00846
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
eval
|
advanced
|
Task: eval
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"tooling",
"governance",
"reproducibility",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b94449afd4b997ad0985822efc5f110685bdda81
|
|
train_00847
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"auditability",
"documentation",
"tests_are_truth",
"governance"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c13aa6a977353f9b75808936394791a47e1660ae
|
|
train_00848
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
review
|
intermediate
|
Task: review
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Rust
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"auditability",
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"governance"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a31eeecf189bbeb9c5e0f048f7ffd49ff25a7208
|
|
train_00849
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
explain
|
expert
|
Task: explain
Topic: Self-improving agents and feedback loops
Difficulty: expert
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"tests_are_truth",
"security_gates",
"tooling",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6d86a5caed88d40ed5bd4ae34c4b916198ec4ec2
|
|
train_00850
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
patch_diff
|
advanced
|
Task: patch_diff
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: advanced
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"governance",
"reproducibility",
"cost_latency_tradeoffs",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1a81aa935844b8b0259b937458e0130187de8e5b
|
|
train_00851
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
review
|
expert
|
Task: review
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"security_gates",
"governance",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
18f562ed9b7c88fde4d64c9efe1ed5c42decfd8b
|
|
train_00852
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
review
|
intermediate
|
Task: review
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "C#",
"developer_needs": [
"documentation",
"ci_integration",
"tooling",
"governance"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
42ca21e67b76fb6d442af95ce756ad1f33bed0c8
|
|
train_00853
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"reproducibility",
"tooling",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
08b9662a51a4624e60a4c2f7fb2c384b194620cc
|
|
train_00854
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"governance",
"auditability",
"evaluation_metrics"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
14086844191eebc6ca8bd33c4ddeb73556551a58
|
|
train_00855
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
design
|
expert
|
Task: design
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"evaluation_metrics",
"tooling",
"ci_integration",
"security_gates"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
eff70011e6b0c03b0e6403bbfad273b9350ffa5a
|
|
train_00856
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
code
|
intermediate
|
Task: code
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: intermediate
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"reproducibility",
"ci_integration",
"repo_scale_reasoning",
"governance"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
79edc3176291c6725cb1ff91c342a0c23c8c6c05
|
|
train_00857
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
design
|
advanced
|
Task: design
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: advanced
Target language: Rust
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"security_gates",
"governance",
"reproducibility",
"cost_latency_tradeoffs"
],
"moe_experts": [
"performance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
885efc6cc8d08775d5c604c4ee332213df383893
|
|
train_00858
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
review
|
intermediate
|
Task: review
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"repo_scale_reasoning",
"governance",
"tests_are_truth",
"tooling"
],
"moe_experts": [
"evaluation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
cbba8fff8f166317721cf895f39d2d33c25b98e2
|
|
train_00859
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"governance",
"tests_are_truth",
"documentation",
"auditability"
],
"moe_experts": [
"data_curation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
026ca1c8ee3cea588df4dbd1cb8cc25e13743f76
|
|
train_00860
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
review
|
intermediate
|
Task: review
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[] |
{
"target_language": "Go",
"developer_needs": [
"governance",
"reproducibility",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
c78ed3e7b3a03f7b82098c69b6133764c4068f68
|
|
train_00861
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
explain
|
intermediate
|
Task: explain
Topic: Extended context and repo-scale understanding
Difficulty: intermediate
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"evaluation_metrics",
"ci_integration",
"cost_latency_tradeoffs",
"security_gates"
],
"moe_experts": [
"evaluation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
20193f6e2adb1508904222abaf6cf7253b8d6f3e
|
|
train_00862
| 2026-01-01T00:00:00
|
Latency, cost, and reliability optimization
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Latency, cost, and reliability optimization
Difficulty: intermediate
Target language: C#
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "C#",
"developer_needs": [
"repo_scale_reasoning",
"ci_integration",
"evaluation_metrics",
"security_gates"
],
"moe_experts": [
"security_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3d7d726e40d2f772c9418ea5a1277a358583f25d
|
|
train_00863
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
eval
|
advanced
|
Task: eval
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: TypeScript
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"cost_latency_tradeoffs",
"auditability",
"governance",
"documentation"
],
"moe_experts": [
"coding_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a37fd6b24d73382cfc4bc130e27095bcfc21df72
|
|
train_00864
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: Go
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Go",
"developer_needs": [
"cost_latency_tradeoffs",
"governance",
"auditability",
"tooling"
],
"moe_experts": [
"security_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8b79b415072248dd73d8991d6e75503a5dc9d85f
|
|
train_00865
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
review
|
expert
|
Task: review
Topic: SWE-bench style real-repo evaluation
Difficulty: expert
Target language: JavaScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"security_gates",
"ci_integration",
"documentation",
"cost_latency_tradeoffs"
],
"moe_experts": [
"agentic_systems_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
16e4970ac029f15f85f8cd33e7c786eb4539e592
|
|
train_00866
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
explain
|
advanced
|
Task: explain
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"documentation",
"ci_integration",
"reproducibility",
"security_gates"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
fcdad25a14898069728c1a07b299d9ec1a57de72
|
|
train_00867
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Self-improving agents and feedback loops
Difficulty: intermediate
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"tooling",
"cost_latency_tradeoffs",
"documentation",
"ci_integration"
],
"moe_experts": [
"data_curation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
aa00ce0e5de861b669ef98c3d4512e65bd4d1c2b
|
|
train_00868
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: advanced
Target language: JavaScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "JavaScript",
"developer_needs": [
"security_gates",
"auditability",
"reproducibility",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
abacfe585000362bd0103aedcda8418689483c93
|
|
train_00869
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
review
|
expert
|
Task: review
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: expert
Target language: Bash
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Review: correctness, security, performance, governance
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"cost_latency_tradeoffs",
"evaluation_metrics",
"repo_scale_reasoning",
"security_gates"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b4c690f878579e00636807e535bda6aa4c631adf
|
|
train_00870
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: TypeScript
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"auditability",
"tests_are_truth",
"repo_scale_reasoning",
"evaluation_metrics"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3ff3dab800d024e06185106ef4182841ce96a138
|
|
train_00871
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
data_pipeline
|
advanced
|
Task: data_pipeline
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Python
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"reproducibility",
"cost_latency_tradeoffs",
"tooling"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
e4bcba771c2fbd42d5e91633ae426ecddea34473
|
|
train_00872
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
design
|
advanced
|
Task: design
Topic: Mixture-of-Experts (MoE) for code
Difficulty: advanced
Target language: Java
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Java",
"developer_needs": [
"reproducibility",
"auditability",
"ci_integration",
"tooling"
],
"moe_experts": [
"agentic_systems_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a7a675acca2b5b2b22ea6de902ec680d122f8a4e
|
|
train_00873
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
explain
|
intermediate
|
Task: explain
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: intermediate
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Python",
"developer_needs": [
"cost_latency_tradeoffs",
"reproducibility",
"tests_are_truth",
"security_gates"
],
"moe_experts": [
"security_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
8e2d7c5c889b94f4d46332ec643a88755ca67594
|
|
train_00874
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
eval
|
intermediate
|
Task: eval
Topic: Mixture-of-Experts (MoE) for code
Difficulty: intermediate
Target language: Bash
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"documentation",
"tooling",
"security_gates",
"governance"
],
"moe_experts": [
"agentic_systems_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
a38e7229500fc3e61fcb532d6d5a3c9ec4d46a0f
|
|
train_00875
| 2026-01-01T00:00:00
|
Governance, provenance, and licensing for code data
|
eval
|
advanced
|
Task: eval
Topic: Governance, provenance, and licensing for code data
Difficulty: advanced
Target language: Java
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"documentation",
"evaluation_metrics",
"tooling",
"cost_latency_tradeoffs"
],
"moe_experts": [
"governance_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f4241e4974a9b232c1b444f0282457e7e31d48dd
|
|
train_00876
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
eval
|
expert
|
Task: eval
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: expert
Target language: TypeScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "TypeScript",
"developer_needs": [
"governance",
"evaluation_metrics",
"tests_are_truth",
"cost_latency_tradeoffs"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
de2aca3aba0cf05f05db71313928d34fd5143ccb
|
|
train_00877
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
design
|
expert
|
Task: design
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"tooling",
"reproducibility",
"security_gates",
"auditability"
],
"moe_experts": [
"agentic_systems_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9e2c3b5240c0ec9727b42508ab715f23f23a136c
|
|
train_00878
| 2026-01-01T00:00:00
|
Self-improving agents and feedback loops
|
compare
|
advanced
|
Task: compare
Topic: Self-improving agents and feedback loops
Difficulty: advanced
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"security_gates",
"tooling",
"repo_scale_reasoning",
"documentation"
],
"moe_experts": [
"evaluation_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
2dc710b53c9497a54ea9bbb985c940187472211a
|
|
train_00879
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
compare
|
expert
|
Task: compare
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: Rust
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Rust",
"developer_needs": [
"reproducibility",
"repo_scale_reasoning",
"documentation",
"tooling"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3643b3e7111aa71199314769f759753e6c956dbd
|
|
train_00880
| 2026-01-01T00:00:00
|
Mixture-of-Experts (MoE) for code
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Mixture-of-Experts (MoE) for code
Difficulty: expert
Target language: Python
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Python",
"developer_needs": [
"evaluation_metrics",
"governance",
"security_gates",
"tests_are_truth"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
da49f2ef73a859a84b182d697d2a32d185786253
|
|
train_00881
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
eval
|
expert
|
Task: eval
Topic: Model merging, distillation, and continued pretraining
Difficulty: expert
Target language: Python
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[] |
{
"target_language": "Python",
"developer_needs": [
"documentation",
"cost_latency_tradeoffs",
"ci_integration",
"tests_are_truth"
],
"moe_experts": [
"coding_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
1630c041c972a4dfead99c2fc04f7f076892b931
|
|
train_00882
| 2026-01-01T00:00:00
|
Dataset curation pipelines (filter, dedupe, quality)
|
eval
|
expert
|
Task: eval
Topic: Dataset curation pipelines (filter, dedupe, quality)
Difficulty: expert
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"governance",
"evaluation_metrics",
"tooling",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
b3eedea4a7d3716d75ef6bcf3d97eb9d0f29d36e
|
|
train_00883
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
patch_diff
|
expert
|
Task: patch_diff
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: JavaScript
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"evaluation_metrics",
"ci_integration",
"security_gates",
"tests_are_truth"
],
"moe_experts": [
"evaluation_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
d13acd8f8798f36b41a7db07321d4cd8df269e21
|
|
train_00884
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
explain
|
advanced
|
Task: explain
Topic: Extended context and repo-scale understanding
Difficulty: advanced
Target language: Bash
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Bash",
"developer_needs": [
"cost_latency_tradeoffs",
"tests_are_truth",
"reproducibility",
"repo_scale_reasoning"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ea692636471f987d38ecb55509b6e8d2013a3a9a
|
|
train_00885
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
patch_diff
|
intermediate
|
Task: patch_diff
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Go
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Patch (diff-style):
```diff
- if x == 0:
- return 1/x
+ if x == 0:
+ raise ValueError('division by zero')
```
Acceptance:
- Tests pass
- No new regressions
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"tooling",
"evaluation_metrics",
"auditability",
"repo_scale_reasoning"
],
"moe_experts": [
"data_curation_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
74d8fa29df6d7f7afe5bedfde7fb7d5903b15a7b
|
|
train_00886
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
code
|
expert
|
Task: code
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Go
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "Go",
"developer_needs": [
"tests_are_truth",
"evaluation_metrics",
"ci_integration",
"tooling"
],
"moe_experts": [
"performance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
3e230847e1356ed26fc97c6607de4fcf648703e9
|
|
train_00887
| 2026-01-01T00:00:00
|
Code-specialized model families and sizing tradeoffs
|
agent_loop
|
intermediate
|
Task: agent_loop
Topic: Code-specialized model families and sizing tradeoffs
Difficulty: intermediate
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "Go",
"developer_needs": [
"reproducibility",
"documentation",
"auditability",
"ci_integration"
],
"moe_experts": [
"governance_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
86b3a89cbd1a5db103893cfa67261eb3a94bc1fa
|
|
train_00888
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
failure_analysis
|
expert
|
Task: failure_analysis
Topic: Secure code generation and policy gates
Difficulty: expert
Target language: Java
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[] |
{
"target_language": "Java",
"developer_needs": [
"tooling",
"documentation",
"tests_are_truth",
"evaluation_metrics"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
140ad6a76383de4d89b11bd4aae11ce7afd20f2b
|
|
train_00889
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
compare
|
intermediate
|
Task: compare
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: Go
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Compare: capability, cost, latency, reliability
|
[] |
{
"target_language": "Go",
"developer_needs": [
"documentation",
"cost_latency_tradeoffs",
"security_gates",
"reproducibility"
],
"moe_experts": [
"coding_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
45bed5c6f1ed92e11ac759eed38e2fd7b060824b
|
|
train_00890
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: SWE-bench style real-repo evaluation
Difficulty: advanced
Target language: Java
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Java",
"developer_needs": [
"tests_are_truth",
"auditability",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"governance_expert",
"coding_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
19c8ae1aa49b78b86f265f1d590f7be508a83c4a
|
|
train_00891
| 2026-01-01T00:00:00
|
Multimodal dev workflows (docs, diagrams, traces)
|
agent_loop
|
expert
|
Task: agent_loop
Topic: Multimodal dev workflows (docs, diagrams, traces)
Difficulty: expert
Target language: SQL
Context: Regulated environment requiring audit trails.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"tooling",
"repo_scale_reasoning",
"ci_integration",
"tests_are_truth"
],
"moe_experts": [
"data_curation_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
6697497ba1711234dafcd74df5e5a550a84364e3
|
|
train_00892
| 2026-01-01T00:00:00
|
Extended context and repo-scale understanding
|
data_pipeline
|
expert
|
Task: data_pipeline
Topic: Extended context and repo-scale understanding
Difficulty: expert
Target language: SQL
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "SQL",
"developer_needs": [
"tests_are_truth",
"reproducibility",
"tooling",
"cost_latency_tradeoffs"
],
"moe_experts": [
"evaluation_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f190231fa22d78e844c94f14fdd2622752b41cbd
|
|
train_00893
| 2026-01-01T00:00:00
|
Tool calling, sandboxes, and CI integration
|
eval
|
intermediate
|
Task: eval
Topic: Tool calling, sandboxes, and CI integration
Difficulty: intermediate
Target language: Python
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Eval:
pass@k, time-to-green, regressions, diff size
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Python",
"developer_needs": [
"ci_integration",
"security_gates",
"documentation",
"evaluation_metrics"
],
"moe_experts": [
"governance_expert",
"agentic_systems_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
923fa5adf4b9db4f8925af4ad44a9e2322428c50
|
|
train_00894
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: TypeScript
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "TypeScript",
"developer_needs": [
"ci_integration",
"tests_are_truth",
"reproducibility",
"auditability"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
98cc578131a7971f85edc852e3d6d0d3c9937da4
|
|
train_00895
| 2026-01-01T00:00:00
|
Secure code generation and policy gates
|
failure_analysis
|
intermediate
|
Task: failure_analysis
Topic: Secure code generation and policy gates
Difficulty: intermediate
Target language: Bash
Context: Offline/local deployment with limited compute.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Failure:
- Initial patch broke edge case
Reflection:
- Missing zero-input guard
Correction:
- Add explicit validation + test
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Bash",
"developer_needs": [
"security_gates",
"auditability",
"governance",
"tooling"
],
"moe_experts": [
"governance_expert",
"performance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
70838dd6d7d8b6a246b8207cfb1cf98ecc352318
|
|
train_00896
| 2026-01-01T00:00:00
|
SWE-bench style real-repo evaluation
|
data_pipeline
|
intermediate
|
Task: data_pipeline
Topic: SWE-bench style real-repo evaluation
Difficulty: intermediate
Target language: C#
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Pipeline:
Ingest → Normalize → Filter → Dedupe → Quality → Mix → Audit
|
[] |
{
"target_language": "C#",
"developer_needs": [
"documentation",
"security_gates",
"cost_latency_tradeoffs",
"repo_scale_reasoning"
],
"moe_experts": [
"coding_expert",
"security_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
ba8e172fe88388c31705cf423a23c570f22be3a2
|
|
train_00897
| 2026-01-01T00:00:00
|
Model merging, distillation, and continued pretraining
|
agent_loop
|
advanced
|
Task: agent_loop
Topic: Model merging, distillation, and continued pretraining
Difficulty: advanced
Target language: JavaScript
Context: Large monorepo with flaky tests and strict CI.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Loop: Plan → Edit → Test → Reflect → Human gate
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "JavaScript",
"developer_needs": [
"repo_scale_reasoning",
"cost_latency_tradeoffs",
"reproducibility",
"ci_integration"
],
"moe_experts": [
"coding_expert",
"data_curation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
f25ed3964e2f494b2e2caf19f2f2f908711ac445
|
|
train_00898
| 2026-01-01T00:00:00
|
Reasoning-first coding models and tunable deliberation
|
explain
|
advanced
|
Task: explain
Topic: Reasoning-first coding models and tunable deliberation
Difficulty: advanced
Target language: Go
Context: Research team validating claims against real repos.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[
"Identify failing behavior via tests",
"Minimize change surface",
"Apply patch",
"Run targeted + full suite",
"Verify no regressions"
] |
{
"target_language": "Go",
"developer_needs": [
"security_gates",
"tests_are_truth",
"tooling",
"repo_scale_reasoning"
],
"moe_experts": [
"data_curation_expert",
"evaluation_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
9d33d1cff7fcc383aacd9747891fc3e6076b0b3c
|
|
train_00899
| 2026-01-01T00:00:00
|
Agentic coding systems (plan→edit→test→reflect)
|
design
|
expert
|
Task: design
Topic: Agentic coding systems (plan→edit→test→reflect)
Difficulty: expert
Target language: SQL
Context: High-traffic service with latency SLOs.
Produce expert-level, production-ready artifacts.
|
Facts:
- Modern AI coding prioritizes correctness, evaluation, and governance.
- Agentic loops with test gates outperform single-pass generation.
Design with risks, metrics, acceptance criteria
|
[] |
{
"target_language": "SQL",
"developer_needs": [
"ci_integration",
"reproducibility",
"cost_latency_tradeoffs",
"documentation"
],
"moe_experts": [
"security_expert",
"governance_expert"
],
"governance": {
"audit_required": true,
"tests_required": true
}
}
|
50e6eb3c3590025da29310bd8ef6f37e86bc9788
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.